Skip to main content

A Haploid-Diploid Evolutionary Algorithm Optimizing Nanoparticle Based Cancer Treatments

  • Chapter
  • First Online:
Cancer, Complexity, Computation

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 46))

  • 393 Accesses

Abstract

This paper uses a recent explanation for the fundamental haploid-diploid lifecycle of eukaryotic organisms to present a new evolutionary algorithm that differs from all previous known work using diploid representations. A form of the Baldwin effect has been identified as inherent to the evolutionary mechanisms of eukaryotes and a simplified version is presented here which maintains such behaviour. Using a well-known abstract tuneable model, it is shown that varying fitness landscape ruggedness varies the benefit of haploid-diploid algorithms. Moreover, the methodology is applied to optimise the targeted delivery of a therapeutic compound utilizing nano-particles to cancerous tumour cells with the multicellular simulator PhysiCell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balaz, I., Petrić, T., Kovacevic, M., Tsompanas, M.A., Stillman, N.: Harnessing adaptive novelty for automated generation of cancer treatments. Biosystems 199, 104290 (2021)

    Article  Google Scholar 

  2. Baldwin, J.M.: A new factor in evolution. Am. Nat. 30(354), 441–451 (1896)

    Article  Google Scholar 

  3. Bernstein, H., Bernstein, C.: Evolutionary origin of recombination during meiosis. Bioscience 60(7), 498–505 (2010)

    Article  Google Scholar 

  4. Bhasin, H., Mehta, S.: On the applicability of diploid genetic algorithms. AI & Soc. 31(2), 265–274 (2016)

    Article  Google Scholar 

  5. Bull, L.: On coevolutionary genetic algorithms. Soft Comput. 5(3), 201–207 (2001)

    Article  MATH  Google Scholar 

  6. Bull, L.: The evolution of sex through the Baldwin effect. Artif. Life 23(4), 481–492 (2017)

    Article  MathSciNet  Google Scholar 

  7. Bull, L.: The Evolution of Complexity: Simple Simulations of Major Innovations. Emergence, Complexity and Computation. Springer International Publishing (2020). https://books.google.gr/books?id=-iPNDwAAQBAJ

  8. Eiben, A.E., Smith, J.E., et al.: Introduction to Evolutionary Computing, vol. 53. Springer (2003)

    Google Scholar 

  9. Ghaffarizadeh, A., Friedman, S.H., Macklin, P.: Biofvm: an efficient, parallelized diffusive transport solver for 3-d biological simulations. Bioinformatics 32(8), 1256–1258 (2015)

    Article  Google Scholar 

  10. Ghaffarizadeh, A., Heiland, R., Friedman, S.H., Mumenthaler, S.M., Macklin, P.: Physicell: an open source physics-based cell simulator for 3-d multicellular systems. PLoS Comput. Biol. 14(2), e1005991 (2018)

    Article  Google Scholar 

  11. Hinton, G.E., Nowlan, S.J.: How learning can guide evolution. Complex Syst. 1(3), 495–502 (1987)

    MATH  Google Scholar 

  12. Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2014)

    Article  Google Scholar 

  13. Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128(1), 11–45 (1987)

    Article  MathSciNet  Google Scholar 

  14. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution. OUP USA (1993)

    Google Scholar 

  15. Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge (1983)

    Book  Google Scholar 

  16. Margulis, L., Sagan, D.: Origins of Sex: Three Billion Years of Genetic Recombination (1986)

    Google Scholar 

  17. Metzcar, J., Wang, Y., Heiland, R., Macklin, P.: A review of cell-based computational modeling in cancer biology. JCO Clin. Cancer Informatics 2, 1–13 (2019)

    Article  Google Scholar 

  18. Preen, R.J., Bull, L., Adamatzky, A.: Towards an evolvable cancer treatment simulator. Biosystems 182, 1–7 (2019)

    Article  Google Scholar 

  19. Smith, J.M., Szathmary, E.: The Major Transitions in Evolution. Oxford University Press, Oxford (1997)

    Google Scholar 

  20. Spears, W.M.: Evolutionary Algorithms: The Role of Mutation and Recombination. Springer Science & Business Media (2013)

    Google Scholar 

  21. Stillman, N.R., Balaz, I., Tsompanas, M.A., Kovacevic, M., Azimi, S., Lafond, S., Adamatzky, A., Hauert, S.: Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment. NPJ Comput. Mater. 7(1), 1–12 (2021)

    Article  Google Scholar 

  22. Trun, N., Trempy, J.: Fundamental Bacterial Genetics. Wiley (2009)

    Google Scholar 

  23. Tsompanas, M.A., Bull, L., Adamatzky, A., Balaz, I.: Evolutionary algorithms designing nanoparticle cancer treatments with multiple particle types [application notes]. IEEE Comput. Intell. Mag. 16(4), 85–99 (2021)

    Article  Google Scholar 

  24. Tsompanas, M.A., Bull, L., Adamatzky, A., Balaz, I.: Novelty search employed into the development of cancer treatment simulations. Informatics Med. Unlocked 19, 100347 (2020)

    Article  Google Scholar 

  25. Tsompanas, M.A., Bull, L., Adamatzky, A., Balaz, I.: In silico optimization of cancer therapies with multiple types of nanoparticles applied at different times. Comput. Methods Programs Biomed. 200, 105886 (2021)

    Article  Google Scholar 

  26. Tsompanas, M.A., Bull, L., Adamatzky, A., Balaz, I.: Metameric representations on optimization of nano particle cancer treatment. Biocybern. Biomed. Eng. 41(2), 352–361 (2021)

    Article  Google Scholar 

  27. Tsompanas, M.A., Bull, L., Adamatzky, A., Balaz, I.: Utilizing differential evolution into optimizing targeted cancer treatments. In: Modern Trends in Controlled Stochastic Processes, pp. 328–340. Springer (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 800983.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michail-Antisthenis Tsompanas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsompanas, MA., Bull, L., Adamatzky, A., Balaz, I. (2022). A Haploid-Diploid Evolutionary Algorithm Optimizing Nanoparticle Based Cancer Treatments. In: Balaz, I., Adamatzky, A. (eds) Cancer, Complexity, Computation. Emergence, Complexity and Computation, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-031-04379-6_10

Download citation

Publish with us

Policies and ethics