Skip to main content

What Cancer Is

  • Chapter
  • First Online:
Cancer, Complexity, Computation

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 46))

  • 426 Accesses

Abstract

The problem of cancer is examined from the metaphysical standpoint of essence and ground. An essentialist definition of cancer is assumed that would be valid in all possible worlds in which cancer could logically exist. The grounds of cancer are then examined and elucidated. Two grounding cancer properties are identified and discussed: symmetry-breaking and computational intelligence. Each examination leads to concrete conclusions for novel therapeutic approaches and a more fundamental understanding of what cancer is at bottom. Other possible cancer grounding properties related to evolution, adaptability and stochastic features are identified for future work. This approach is novel and offers new solutions to the problem of cancer.

…it seems to me that I must consider as contained in the individual concept of myself only that which is such that I should not longer be me if it were not in me: and that all that is to the contrary such that it could be or not be in me without my ceasing to be me, cannot be considered in my individual concept.

Letter from Antoine Arnauld to Gottfried Leibniz [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A canyon with vertical walls and closed upstream with a similar vertical wall, that is, a dead end.

  2. 2.

    Viral and other external (e.g., radiation) modifications of the host’s molecular machinery that lead to cancer are a subcategory.

  3. 3.

    Cancer has indeterministic properties as well, for example, random mutations related to its origin and evolution, and the stochastic binding of transcription factors to their genomic sites. The overlap and interplay of deterministic grounds and non-deterministic features await further research.

References

  1. Mason, H.: The Leibniz-Arnauld Correspondence. Manchester University Press, Barnes & Noble, New York (1967)

    Google Scholar 

  2. Kovacs, D.M.: Modality (2020)

    Google Scholar 

  3. Stalnaker, R.C.: Possible worlds. Noûs, 65–75 (1976)

    Google Scholar 

  4. Divers, J.: Possible Worlds. Routledge (2006)

    Google Scholar 

  5. Correia, F.: On the reduction of necessity to essence. Philos. Phenomenol. Res. 84(3), 639–653 (2012)

    Google Scholar 

  6. Ditter, A.: The reduction of necessity to essence. Mind 129(514), 351–380 (2020). https://doi.org/10.1093/mind/fzz045

    Article  MathSciNet  Google Scholar 

  7. Leech, J.: Essence and mere necessity. R. Inst. Philos. Suppl. 82, 309–332 (2018). https://doi.org/10.1017/s1358246118000139

    Article  Google Scholar 

  8. Zylstra, J.: Essence, necessity, and definition. Philos. Stud. 176(2), 339–350 (2017). https://doi.org/10.1007/s11098-017-1018-y

    Article  MathSciNet  Google Scholar 

  9. Yablo, S.: Identity, essence, and indiscernibility. J. Philos. 84(6), 293–314 (1987)

    MathSciNet  Google Scholar 

  10. Shumener, E.: Identity. In: The Routledge Handbook of Metaphysical Grounding. Routledge (2020)

    Google Scholar 

  11. Zylstra, J.: Essence. In: The Routledge Handbook of Metaphysical Grounding, pp. 324–335. Routledge (2020)

    Google Scholar 

  12. Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100(1), 57–70 (2000)

    Google Scholar 

  13. Hicks, M.T., van Elswyk, P.: Humean laws and circular explanation. Philos. Stud. 172(2), 433–443 (2015)

    Google Scholar 

  14. Wilsch, T.: Laws of metaphysics. In: The Routledge Handbook of Metaphysical Grounding, pp. 425–436. Routledge (2020)

    Google Scholar 

  15. Raven, M.J.: Introduction. In: The Routledge Handbook of Metaphysical Grounding. Routledge (2020)

    Google Scholar 

  16. Zalta, E.N.: Essence and modality. Mind 115(459), 659–694 (2006)

    Google Scholar 

  17. Hern, W.M.: Has the human species become a cancer on the planet? A theoretical view of population growth as a sign of pathology. Curr. World Lead. 36(6), 1089–1124 (1993)

    Google Scholar 

  18. MacDougall, A.K.: Humans as cancer. Wild Earth 6, 81–88 (1996)

    Google Scholar 

  19. Pauly, D.: Homo sapiens: cancer or parasite? Ethics Sci. Environ. Polit. 14(1), 7–10 (2014)

    Google Scholar 

  20. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011). https://doi.org/10.1016/j.cell.2011.02.013

    Article  Google Scholar 

  21. Cunningham, J.J., Brown, J.S., Gatenby, R.A., Staňková, K.: Optimal control to develop therapeutic strategies for metastatic castrate resistant prostate cancer. J. Theor. Biol. 459, 67–78 (2018). https://doi.org/10.1016/j.jtbi.2018.09.022

    Article  MathSciNet  MATH  Google Scholar 

  22. Gatenby, R.A., Silva, A.S., Gillies, R.J., Frieden, B.R.: Adaptive therapy. Cancer Res. 69(11), 4894–4903 (2009). https://doi.org/10.1158/0008-5472.CAN-08-3658

    Article  Google Scholar 

  23. Zhang, J., Cunningham, J.J., Brown, J.S., Gatenby, R.A.: Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat. Commun. 8(1), 1–9 (2017). https://doi.org/10.1038/s41467-017-01968-5

    Article  Google Scholar 

  24. Rosen, G.: Real definition. Anal. Philos. 56(3), 189–209 (2015)

    Google Scholar 

  25. Raven, M.J.: Ground. Philos. Compass 10(5), 322–333 (2015)

    Google Scholar 

  26. McSweeney, M.M.: Logic. In: The Routledge Handbook of Metaphysical Grounding, pp. 324–335. Routledge (2020)

    Google Scholar 

  27. Schnieder, B.: Dependence. In: The Routledge Handbook of Metaphysical Grounding, pp. 107–120. Routledge (2020)

    Google Scholar 

  28. Wittgenstein, L., Anscombe, G.E.M., von Wright, G.H., Paul, D., Anscombe, G.E.M.: On certainty, vol. 174. Oxford, Blackwell (1969)

    Google Scholar 

  29. Correia, F.: Granularity. In: Routledge Handbook of Metaphysical Grounding. Routledge (2020)

    Google Scholar 

  30. Correia, F.: Grounding and truth-functions. Logique et Anal. 53(211), 251–279 (2010)

    MATH  Google Scholar 

  31. Wang, J.: Cause. In: The Routledge Handbook of Metaphysical Grounding. Routledge (2020)

    Google Scholar 

  32. Trogdon, K.: Grounding-mechanical explanation. Philos. Stud. 175(6), 1289–1309 (2017). https://doi.org/10.1007/s11098-017-0911-8

    Article  Google Scholar 

  33. Bliss, R., Trogdon, K.: Metaphysical grounding (2014)

    Google Scholar 

  34. Rosen, G.: Metaphysical dependence: grounding and reduction. Modality: Metaphys. Logic, Epistemol. 109–136 (2010)

    Google Scholar 

  35. Glazier, M.: Explanation. In: The Routledge Handbook of Metaphysical Grounding. Routledge (2020)

    Google Scholar 

  36. Carnino, P.: On the reduction of grounding to essence. Stud. Philos. Est. 56–71 (2015). https://doi.org/10.12697/spe.2014.7.2.04

  37. Zylstra, J.: The essence of grounding. Synthese 196(12), 5137–5152 (2018). https://doi.org/10.1007/s11229-018-1701-3

    Article  MathSciNet  MATH  Google Scholar 

  38. Fine, K.I.T.: Unified foundations for essence and ground. J> Am. Philos. Assoc. 1(2), 296–311 (2015). https://doi.org/10.1017/apa.2014.26

    Article  Google Scholar 

  39. Correia, F., Skiles, A.: Grounding, essence, and identity. Philos. Phenomenol. Res. 98(3), 642–670 (2017). https://doi.org/10.1111/phpr.12468

    Article  Google Scholar 

  40. Fine, K.: Identity criteria and ground. Philos. Stud. 173(1), 1–19 (2015). https://doi.org/10.1007/s11098-014-0440-7

    Article  MathSciNet  Google Scholar 

  41. Thompson, N.: Strict partial order. In: The Routledge Handbook of Metaphysical Grounding, pp. 259–270. Routledge (2020)

    Google Scholar 

  42. Correia, F.: Real definitions. Philos. Issues 27(1), 52–73 (2017). https://doi.org/10.1111/phis.12091

    Article  Google Scholar 

  43. Zylstra, J.: Constitutive and consequentialist essence. Thought: J. Philos. 8(3), 190–199 (2019). https://doi.org/10.1002/tht3.419

  44. Lewis, D.: On the Plurality of Worlds, vol. 322. Oxford Blackwell (1986)

    Google Scholar 

  45. Maurin, A.-S.: Grounding and metaphysical explanation: it’s complicated. Philos. Stud. 176(6), 1573–1594 (2018). https://doi.org/10.1007/s11098-018-1080-0

    Article  MathSciNet  Google Scholar 

  46. Emery, N.: Laws of nature. In: Routledge Handbook of Metaphysical Grounding. Routledge New York, NY (2020)

    Google Scholar 

  47. Dixon, T.S.: Infinite descent (2020)

    Google Scholar 

  48. Trogdon, K.: Truthmaking (2020)

    Google Scholar 

  49. Trogdon, K.: Grounding-mechanical explanation. Philos. Stud. 175(6), 1289–1309 (2018)

    Google Scholar 

  50. Robertson, T., Atkins, P.: Essential vs. accidental properties. Stanford Encyclopedia of Philosophy (2008)

    Google Scholar 

  51. Korman, D.Z.: Debunking arguments. Philos Compass 14(12), e12638 (2019)

    Google Scholar 

  52. Barker, J.: Debunking arguments and metaphysical laws. Philos. Stud. 177(7), 1829–1855 (2019). https://doi.org/10.1007/s11098-019-01287-z

    Article  Google Scholar 

  53. Lazebnik, Y.: What are the hallmarks of cancer? Nat. Rev. Cancer 10(4), 232–233 (2010)

    Google Scholar 

  54. Sonnenschein, C., Soto, A.M.: The aging of the 2000 and 2011 hallmarks of cancer reviews: a critique. J. Biosci. 38(3), 651–663 (2013)

    Google Scholar 

  55. Sonnenschein, C., Soto, A.M., Rangarajan, A., Kulkarni, P.: Competing views on cancer. J. Biosci. 39(2), 281–302 (2014)

    Google Scholar 

  56. Fouad, Y.A., Aanei, C.: Revisiting the hallmarks of cancer. Am. J. Cancer Res. 7(5), 1016 (2017)

    Google Scholar 

  57. Baker, S.G.: Paradoxes in carcinogenesis should spur new avenues of research: an historical perspective. Disruptive Sci. Technol. 1(2), 100–107 (2012)

    Google Scholar 

  58. Sonnenschein, C., Soto, A.M.: Cancer metastases: so close and so far. J. Natl. Cancer Inst. 107(11), djv236 (2015)

    Google Scholar 

  59. Sonnenschein, C., Soto, A.M.: Carcinogenesis explained within the context of a theory of organisms. Prog. Biophys. Mol. Biol. 122(1), 70–76 (2016)

    Google Scholar 

  60. Soto, A.M., Sonnenschein, C.: Paradoxes in carcinogenesis: there is light at the end of that tunnel! Disruptive Sci. Technol. 1(3), 154–156 (2013)

    Google Scholar 

  61. Weinberg, C.R., Zaykin, D.: Is bad luck the main cause of cancer? JNCI J. Natl. Cancer Inst. 107(7), djv125-djv125 (2015). https://doi.org/10.1093/jnci/djv125

  62. Tomasetti, C., Vogelstein, B.: Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347(6217), 78–81 (2015)

    Google Scholar 

  63. Sonnenschein, C., Soto, A.M.: Over a century of cancer research: inconvenient truths and promising leads. PLoS Biol. 18(4), e3000670 (2020). https://doi.org/10.1371/journal.pbio.3000670

    Article  Google Scholar 

  64. Weyl, H.: Symmetry. Princeton University Press, Princeton (1952)

    MATH  Google Scholar 

  65. Feynman, R.: Symmetry in physical laws. In: The Feynman Lectures on Physics, vol. 1 (1963)

    Google Scholar 

  66. Brading, K., Castellani, E.: Symmetry and symmetry breaking. In: The Stanford Encyclopedia of Philosophy (2013)

    Google Scholar 

  67. Collier, J.: Information originates in symmetry breaking. Symmetry: Cult. & Sci. 7, 247–256 (1996)

    Google Scholar 

  68. Strocchi, F.: Symmetry Breaking. Springer, Berlin (2010)

    MATH  Google Scholar 

  69. Kosmann-Schwarzbach, Y.: The Noether theorems. In: The Noether Theorems, pp. 55–64. Springer (2011)

    Google Scholar 

  70. Neuenschwander, D.E.: Emmy Noether's wonderful theorem. JHU Press, (2017)

    Google Scholar 

  71. Frost, J.J., Pienta, K.J., Coffey, D.S.: Symmetry and symmetry breaking in cancer: a foundational approach to the cancer problem. Oncotarget 9(14), 11429–11440 (2018). https://doi.org/10.18632/oncotarget.22939

    Article  Google Scholar 

  72. Jolly, M.K., Jia, D., Boareto, M., Mani, S.A., Pienta, K.J., Ben-Jacob, E., Levine, H.: Coupling the modules of EMT and stemness: a tunable “stemness window” model. Oncotarget 6(28), 25161–25174 (2015). https://doi.org/10.18632/oncotarget.4629

    Article  Google Scholar 

  73. Lu, M., Jolly, M.K., Levine, H., Onuchic, J.N., Ben-Jacob, E.: MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. Proc. Natl. Acad. Sci. USA 110(45), 18144–18149 (2013). https://doi.org/10.1073/pnas.1318192110

    Article  Google Scholar 

  74. Lu, M., Jolly, M.K., Onuchic, J., Ben-Jacob, E.: Toward decoding the principles of cancer metastasis circuits. Cancer Res. 74(17), 4574–4587 (2014). https://doi.org/10.1158/0008-5472.can-13-3367

    Article  Google Scholar 

  75. Jolly, M.K., Tripathi, S.C., Jia, D., Mooney, S.M., Celiktas, M., Hanash, S.M., Mani, S.A., Pienta, K.J., Ben-Jacob, E., Levine, H.: Stability of the hybrid epithelial/mesenchymal phenotype. Oncotarget 7(19), 27067–27084 (2016). https://doi.org/10.18632/oncotarget.8166

    Article  Google Scholar 

  76. Tadeo, I., Berbegall, A.P., Escudero, L.M., Álvaro, T., Noguera, R.: Biotensegrity of the extracellular matrix: physiology, dynamic mechanical balance, and implications in oncology and mechanotherapy. Front. Oncol. 4, 39 (2014)

    Google Scholar 

  77. Pienta, K., Coffey, D.: Cellular harmonic information transfer through a tissue tensegrity-matrix system. Med. Hypotheses 34(1), 88–95 (1991)

    Google Scholar 

  78. Ingber, D.E., Wang, N., Stamenović, D.: Tensegrity, cellular biophysics, and the mechanics of living systems. Rep. Prog. Phys. 77(4), 046603 (2014)

    MathSciNet  Google Scholar 

  79. Goehring, N.W., Grill, S.W.: Cell polarity: mechanochemical patterning. Trends Cell Biol. 23(2), 72–80 (2013)

    Google Scholar 

  80. Schiffhauer, E.S., Robinson, D.N.: Mechanochemical signaling directs cell-shape change. Biophys. J. 112(2), 207–214 (2017)

    Google Scholar 

  81. Adamatzky, A., Huber, F., Schnauß, J.: Computing on actin bundles network. Sci. Rep. 9(1), 1–10 (2019)

    Google Scholar 

  82. Mayne, R., Adamatkzy, A.: Cellular automata modelling of slime mould actin network signalling. Nat. Comput. 18(1), 5–12 (2019)

    MathSciNet  Google Scholar 

  83. Siccardi, S., Adamatzky, A., Tuszyński, J., Huber, F., Schnauß, J.: Actin networks voltage circuits. Phys. Rev. E 101(5), 052314 (2020)

    Google Scholar 

  84. Dehmer, M., Emmert-Streib, F.: Quantitative Graph Theory: Mathematical Foundations and Applications. CRC Press, Boca Raton, London, New York (2015)

    MATH  Google Scholar 

  85. Lauwerier, H.A.: Applied Graph Theory (2014)

    Google Scholar 

  86. Rietman, E.A., Colt, J.Z., Tuszynski, J.A.: Interactomes, manufacturomes and relational biology: analogies between systems biology and manufacturing systems. Theor. Biol. Med. Model. 8(1), 19 (2011)

    Google Scholar 

  87. Rietman, E.A., Karp, R.L., Tuszynski, J.A.: Review and application of group theory to molecular systems biology. Theor. Biol. Med. Model. 8(1), 21 (2011)

    Google Scholar 

  88. Garlaschelli, D., Ruzzenenti, F., Basosi, R.: Complex networks and symmetry I: a review. Symmetry 2(3), 1683–1709 (2010)

    MathSciNet  MATH  Google Scholar 

  89. MacArthur, B.D., Sánchez-García, R.J., Anderson, J.W.: On automorphism groups of networks (2007). arXiv:0705.3215

  90. MacArthur, B.D., Sánchez-, R.J., Anderson, J.W.: Symmetry in complex networks. Discret. Appl. Math. 156(18), 3525–3531 (2008)

    MathSciNet  MATH  Google Scholar 

  91. Rodriguez, L.: Automorphism groups of simple graphs (2014)

    Google Scholar 

  92. Babai, L.: Graph isomorphism in quasipolynomial time (2016). arXiv:1512.03547v2

  93. Yaveroglu, O.N., Malod-Dognin, N., Davis, D., Levnajic, Z., Janjic, V., Karapandza, R., Stojmirovic, A., Przulj, N.: Revealing the hidden language of complex networks. Sci. Rep. 4, 4547 (2014). https://doi.org/10.1038/srep04547

    Article  Google Scholar 

  94. Fortnow, L.: The golden ticket: P, NP, and the search for the impossible. Princeton University Press, Princeton (2013)

    Google Scholar 

  95. Weisstein, E.: Graph automorphism (2008). http://mathworld.wolfram.com/GraphAutomorphism.html

  96. Rietman, E.A., Platig, J., Tuszynski, J.A., Klement, G.L.: Thermodynamic measures of cancer: Gibbs free energy and entropy of protein–protein interactions. J. Biol. Phys. 42(3), 339–350 (2016)

    Google Scholar 

  97. Zenil, H.: Algorithmic Data Analytics, Small Data Matters and Correlation versus Causation (2013). arXiv:1309.1418

  98. Zenil, H., Kiani, N.A., Tegnér, J.: Methods of information theory and algorithmic complexity for network biology. In: Seminars in Cell & Developmental Biology, pp. 32–43. Elsevier (2016)

    Google Scholar 

  99. Zenil, H., Kiani, N.A., Tegnér, J.: Quantifying loss of information in network-based dimensionality reduction techniques. J. Complex Netw. 4(3), 342–362 (2016)

    MathSciNet  Google Scholar 

  100. Zenil, H., Soler-Toscano, F., Dingle, K., Louis, A.A.: Correlation of automorphism group size and topological properties with program-size complexity evaluations of graphs and complex networks. Phys. A 404, 341–358 (2014)

    MathSciNet  MATH  Google Scholar 

  101. Chapman, A.: Semi-Autonomous Networks Effective Control of Networked Systems Through Protocols, Design, and Modeling. Springer International Publishing, Cham (2015)

    Google Scholar 

  102. Chapman, A.: Controllability and observability of Cartesian product networks. In: Semi-Autonomous Networks. Springer (2015)

    Google Scholar 

  103. Chapman, A., Mesbahi, M.: State controllability, output controllability and stabilizability of networks: a symmetry perspective. In: 2015 IEEE 54th Annual Conference on Decision and Control (CDC), pp. 4776–4781. IEEE (2015)

    Google Scholar 

  104. de Badyn, M.H., Chapman, A., Mesbahi, M.: Network entropy: a system-theoretic perspective. In: 2015 IEEE 54th Annual Conference on Decision and Control (CDC), pp. 5512–5517. IEEE (2015)

    Google Scholar 

  105. Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)

    Google Scholar 

  106. Bak, J.H.: Error and attack tolerance of scale-free networks: effects of geometry. Korea Advanced Institute of Science and Technology (2010)

    Google Scholar 

  107. Crucitti, P., Latora, V., Marchiori, M., Rapisarda, A.: Error and attack tolerance of complex networks. Phys. A 340(1), 388–394 (2004)

    MathSciNet  MATH  Google Scholar 

  108. Matta, J., Borwey, J., Ercal, G.: Comparative resilience notions and vertex attack tolerance of scale-free networks (2014). arXiv:1404.0103

  109. Schieber, T.A., Carpi, L., Frery, A.C., Rosso, O.A., Pardalos, P.M., Ravetti, M.G.: Information theory perspective on network robustness. Phys. Lett. A 380(3), 359–364 (2016)

    MATH  Google Scholar 

  110. Nie, T., Guo, Z., Zhao, K., Lu, Z.-M.: The dynamic correlation between degree and betweenness of complex network under attack. Phys. A 457, 129–137 (2016). https://doi.org/10.1016/j.physa.2016.03.075

    Article  Google Scholar 

  111. Manzano, M., Sahneh, F., Scoglio, C., Calle, E., Marzo, J.L.: Robustness surfaces of complex networks. Sci. Rep. 4, 6133 (2014). https://doi.org/10.1038/srep06133

    Article  Google Scholar 

  112. Frost, J.J.: Cancer’s intelligence. Int. J. Unconv. Comput. 16(1), 41–78 (2021)

    Google Scholar 

  113. Dennett, D.: From Bacteria to Bach and Back: The Evolution of Minds. Springer Science & Business Media (2018)

    Google Scholar 

  114. Wissner-Gross, A.D.: A new equation for intelligence (2013)

    Google Scholar 

  115. Wissner, A.D., Freer, C.E.: Causal entropic forces. Phys. Rev. Lett. 110(16), 1–5 (2013). https://doi.org/10.1103/PhysRevLett.110.168702

    Article  Google Scholar 

  116. Gardner, H.: Multiple Intelligences, vol. 5. Minnesota Center for Arts Education (1992)

    Google Scholar 

  117. Ben-Jacob, E.: My encounters with bacteria–learning about communication, cooperation and choice. Phys. Biol. 11(5), 053009 (2014). https://doi.org/10.1088/1478-3975/11/5/053009

    Article  Google Scholar 

  118. Ben-Jacob, E., Coffey, D.S., Levine, H.: Bacterial survival strategies suggest rethinking cancer cooperativity. Trends Microbiol. 20(9), 403–410 (2012). https://doi.org/10.1016/j.tim.2012.06.001

    Article  Google Scholar 

  119. Ben-Jacob, E., Cohen, I.I., Shochet, O., Tenenbaum, A., Czirok, A., Vicsek, T.: Cooperative formation of chiral patterns during growth of bacterial colonies. Phys. Rev. Lett. 75(15), 2899–2902 (1995). https://doi.org/10.1103/PhysRevLett.75.2899

    Article  MATH  Google Scholar 

  120. Kauffman, S.: At home in the Universe. Oxford University Press, New York, Oxford (1995)

    Google Scholar 

  121. Zhabotinsky, A.M.: Belousov-Zhabotinsky reaction. Scholarpedia (2007)

    Google Scholar 

  122. Adamatzky, A., Akl, S., Burgin, M., Calude, C.S., Costa, J.F., Dehshibi, M.M., Gunji, Y.P., Konkoli, Z., MacLennan, B., Marchal, B., Margenstern, M., Martínez, G.J., Mayne, R., Morita, K., Schumann, A., Sergeyev, Y.D., Sirakoulis, G.C., Stepney, S., Svozil, K., Zenil, H.: East-west paths to unconventional computing. Prog. Biophys. Mol. Biol. 131, 469–493 (2017). https://doi.org/10.1016/j.pbiomolbio.2017.08.004

    Article  Google Scholar 

  123. Stepney, S., Rasmussen, S.: Computational Matter (2018)

    Google Scholar 

  124. Harding, S., Koutník, J., Schmidhuber, J., Adamatzky, A.: Discovering Boolean gates in slime mould. In: Stepney, S., Adamatzky, A. (eds.) Inspired by Nature: Essays Presented to Julian F. Miller on the Occasion of his 60th Birthday, pp. 323–337. Springer International Publishing, Cham (2018)

    Google Scholar 

  125. Vallverdú, J., Castro, O., Mayne, R., Talanov, M., Levin, M., Baluška, F., Gunji, Y., Dussutour, A., Zenil, H., Adamatzky, A.: Slime mould: the fundamental mechanisms of biological cognition. Biosystems 165, 57–70 (2018). https://doi.org/10.1016/j.biosystems.2017.12.011

    Article  Google Scholar 

  126. Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)

    Google Scholar 

  127. Ignatova, Z., Martínez-Pérez, I., Zimmermann, K.-H.: DNA Computing Models. Springer (2008)

    Google Scholar 

  128. Nicolau, D.V., Jr., Lard, M., Korten, T., van Delft, F.C., Persson, M., Bengtsson, E., Mansson, A., Diez, S., Linke, H., Nicolau, D.V.: Parallel computation with molecular-motor-propelled agents in nanofabricated networks. Proc. Natl. Acad. Sci. USA 113(10), 2591–2596 (2016). https://doi.org/10.1073/pnas.1510825113

    Article  Google Scholar 

  129. Baumgardner, J., Acker, K., Adefuye, O., Crowley, S.T., Deloache, W., Dickson, J.O., Heard, L., Martens, A.T., Morton, N., Ritter, M., Shoecraft, A., Treece, J., Unzicker, M., Valencia, A., Waters, M., Campbell, A.M., Heyer, L.J., Poet, J.L., Eckdahl, T.T.: Solving a Hamiltonian path problem with a bacterial computer. J. Biol. Eng. 3, 11 (2009). https://doi.org/10.1186/1754-1611-3-11

    Article  Google Scholar 

  130. Crutchfield, J.P.: The origins of computational mechanics: a brief intellectual history and several clarifications (2017). arXiv:1710.06832

  131. Crutchfield, J.P., Ditto, W.L., Sinha, S.: Introduction to focus issue: intrinsic and designed computation: information processing in dynamical systems—beyond the digital hegemony. Chaos 20(3), 037101 (2010). https://doi.org/10.1063/1.3492712

    Article  Google Scholar 

  132. Crutchfield, J.P., Ellison, C.J., Riechers, P.M.: Exact complexity: The spectral decomposition of intrinsic computation. Phys. Lett. Sect. A: Gen. At. Solid State Phys. 380(9–10), 998–1002 (2016). https://doi.org/10.1016/j.physleta.2016.01.008

    Article  MATH  Google Scholar 

  133. Crutchfield, J.P.: Between order and chaos. Nat. Phys. 8(1), 17–24 (2011). https://doi.org/10.1038/nphys2190

    Article  Google Scholar 

  134. Görnerup, O., Crutchfield, J.P.: Primordial evolution in the finitary process soup. In: Physics of Emergence and Organization< pp. 297–311. World Scientific (2008)

    Google Scholar 

  135. Roli, A., Villani, M., Filisetti, A., Serra, R.: Dynamical criticality: overview and open questions. J. Syst. Sci. Complex. 31(3), 647–663 (2018). https://doi.org/10.1007/s11424-017-6117-5

    Article  MATH  Google Scholar 

  136. Shalizi, C.R., Crutchfield, J.P.: Computational mechanics: pattern and prediction, structure and simplicity. J. Stat. Phys. 104(3–4), 817–879 (2001)

    MathSciNet  MATH  Google Scholar 

  137. Fumiã, H.F., Martins, M.L.: Boolean network model for cancer pathways: predicting carcinogenesis and targeted therapy outcomes. PLoS ONE 8(7), e69008 (2013). https://doi.org/10.1371/journal.pone.0069008

    Article  Google Scholar 

  138. Hu, Y., Gu, Y., Wang, H., Huang, Y., Zou, Y.M.: Integrated network model provides new insights into castration-resistant prostate cancer. Sci. Rep. 5, 1–12 (2015). https://doi.org/10.1038/srep17280

    Article  Google Scholar 

  139. Poret, A., Guziolowski, C.: Therapeutic target discovery using Boolean network attractors: improvements of kali R. Soc. Open Sci. 5 (2017)

    Google Scholar 

  140. Nagaraj, S.H., Reverter, A.: A Boolean-based systems biology approach to predict novel genes associated with cancer: application to colorectal cancer. BMC Syst. Biol. 5(1), 35 (2011)

    Google Scholar 

  141. Stratmann, A.T., Fecher, D., Wangorsch, G., Göttlich, C., Walles, T., Walles, H., Dandekar, T., Dandekar, G., Nietzer, S.L.: Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean in silico model. Mol. Oncol. 8(2), 351–365 (2014)

    Google Scholar 

  142. Srihari, S., Raman, V., Leong, H.W., Ragan, M.A.: Evolution and controllability of cancer networks: a boolean perspective. IEEE/ACM Trans. Comput. Biol. Bioinf. 11(1), 83–94 (2013)

    Google Scholar 

  143. Von der Heyde, S., Bender, C., Henjes, F., Sonntag, J., Korf, U., Beissbarth, T.: Boolean ErbB network reconstructions and perturbation simulations reveal individual drug response in different breast cancer cell lines. BMC Syst. Biol. 8(1), 75 (2014)

    Google Scholar 

  144. Bowling, M., Burch, N., Johanson, M., Tammelin, O.: Heads-up limit hold’em poker is solved. Science 347(6218), 145–149 (2015). https://doi.org/10.1126/science.1259433

    Article  Google Scholar 

  145. Brown, N., Sandholm, T.: Superhuman AI for heads-up no-limit poker: libratus beats top professionals. Science 359(6374), 418–424 (2018). https://doi.org/10.1126/science.aao1733

    Article  MathSciNet  MATH  Google Scholar 

  146. Brown, N., Sandholm, T.: Superhuman AI for multiplayer poker. Science 365(6456), 885–890 (2019)

    MathSciNet  MATH  Google Scholar 

  147. Moravčík, M., Schmid, M., Burch, N., Lisý, V., Morrill, D., Bard, N., Davis, T., Waugh, K., Johanson, M., Bowling, M.: DeepStack: expert-level artificial intelligence in heads-up no-limit poker. Science 356(6337), 508–513 (2017). https://doi.org/10.1126/science.aam6960

    Article  MathSciNet  MATH  Google Scholar 

  148. Morgenstern, O., Von Neumann, J.: Theory of Games and Economic Behavior. Princeton university press, Princeton (1953)

    Google Scholar 

  149. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3) (1961). https://doi.org/10.1147/rd.441.0261

  150. Landauer, R.: Information is physical. Phys. Today 44(5), 23–29 (1991)

    Google Scholar 

  151. Lloyd, S.: Ultimate physical limits to computation. Nature 406(6799), 1047–1054 (2000). https://doi.org/10.1038/35023282

    Article  Google Scholar 

  152. Lloyd, S.: Computational capacity of the universe. Phys. Rev. Lett. 88(23), 4 (2002). https://doi.org/10.1103/PhysRevLett.88.237901

    Article  MathSciNet  Google Scholar 

  153. Lloyd, S.: Programming the universe: a quantum computer scientist takes on the cosmos. Vintage (2006)

    Google Scholar 

  154. Lloyd, S.: The universe as quantum computer (2013). arXiv [quant-ph], https://doi.org/10.1111/tbj.12461

  155. Di Pierro, M., Potoyan, D.A., Wolynes, P.G., Onuchic, J.N.: Anomalous diffusion, spatial coherence, and viscoelasticity from the energy landscape of human chromosomes. Proc. Natl. Acad. Sci. 115(30), 7753–7758 (2018)

    Google Scholar 

  156. Khanna, N., Zhang, Y., Lucas, J.S., Dudko, O.K., Murre, C.: Chromosome dynamics near the sol-gel phase transition dictate the timing of remote genomic interactions. Nat. Commun. 10(1), 1–13 (2019)

    Google Scholar 

  157. Lucas, J.S., Zhang, Y., Dudko, O.K., Murre, C.: 3D trajectories adopted by coding and regulatory DNA elements: first-passage times for genomic interactions. Cell 158(2), 339–352 (2014)

    Google Scholar 

  158. Skiles, A.: Necessity. In: The Routledge Handbook of Metaphysical Grounding, pp. 148–163. Routledge (2020)

    Google Scholar 

Download references

Acknowledgements

I thank the many individuals who brought me to the field of cancer and its manifestations in information science, physics, complexity and computation. They are Donald Coffey, Eshel Ben-Jacob, Kenneth Pienta, Shawn Lupod, William Issacs and others from The Johns Hopkins University and the Brady Urological Institute. Finally, I thank Ms. Nina Frost for her expert editing work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. James Frost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frost, J.J. (2022). What Cancer Is. In: Balaz, I., Adamatzky, A. (eds) Cancer, Complexity, Computation. Emergence, Complexity and Computation, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-031-04379-6_1

Download citation

Publish with us

Policies and ethics