Skip to main content

The Role of the Neuroimmune Network in Allergic Inflammation

  • Chapter
  • First Online:
Textbook of Allergen Tolerance
  • 347 Accesses

Abstract

Immune cells and molecules and synaptic transmission neuro molecules play a regulatory role in the communication pathways at the whole organism level and at the local levels to engage all body resources to fight against invaders or tumor cells wherever they appear. The neuroimmune network controls allergen tolerance maintenance on which allergic inflammation depends at both the local and systemic levels. This chapter focuses on different neuro molecules and our understanding of balance and imbalance between the immune system and nervous system in allergic and “neurogenic” inflammation, including the action of prevalent pro-immunogenic or pro-tolerogenic neuro molecules. Notably, the research on pathogenesis of many forms of allergies, associated with bidirectional interaction of the neuroimmune network and target organs, is at the cutting-edge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen C-S, Barnoud C, Scheiermann C. Peripheral neurotransmitters in the immune system. Curr Opin Physiol. 2021;19:73–9. https://doi.org/10.1016/j.cophys.2020.09.009.

    Article  CAS  Google Scholar 

  2. Dantzer R. Neuroimmune interactions: from the brain to the immune system and vice versa. Physiol Rev. 2018;98:477–504. https://doi.org/10.1152/physrev.00039.2016.

    Article  CAS  PubMed  Google Scholar 

  3. Klimov AV, Isaev PYu, Klimov VV, Sviridova VS. Endotypes of allergic rhinitis and asthma accompanying food allergy. Bull Sib Med. 2019;18(2):287-289.https://doi.org/10.20538/1682-0363-2019-2-287-289.

  4. Yamauchi K, Ogasawara M. The role of histamine in the pathophysiology of asthma and the clinical efficacy of antihistamines in asthma therapy. Int J Mol Sci. 2019;20:1733. https://doi.org/10.3390/ijms20071733.

    Article  CAS  PubMed Central  Google Scholar 

  5. Voisin T, Bouvier A, Chiu IV. Neuro-immune interactions in allergic diseases: novel targets for therapeutics. Int Immunol. 2017;29(6):247–61. https://doi.org/10.1093/intimm/dxx040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mittal R, Debs LH, Patel AP, Nguyen D, Patel K, O'Connor G, et al. Neurotransmitters: the critical modulators regulating gut-brain axis. J Cell Physiol. 2017;232(9):2359–72. https://doi.org/10.1002/jcp.25518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Klose CSN, Veiga-Fernandes H. Neuroimmune interactions in peripheral tissues. Eur J Immunol. 2021;51:1602–14. https://doi.org/10.1002/eji.202048812.

    Article  CAS  PubMed  Google Scholar 

  8. Godinho-Silva C, Cardoso F, Veiga-Fernandes H. Neuro-immune cell units: a new paradigm in physiology. Annu Rev Immunol. 2019;37:19–46. https://doi.org/10.1146/annurev-immunol-042718-041812.

    Article  CAS  PubMed  Google Scholar 

  9. Audrit KJ, Delventhal L, Aydin O, Nassenstein C. The nervous system of airways and its remodeling in inflammatory lung diseases. Cell Tissue Res. 2017;367:571–90. https://doi.org/10.1007/s00441-016-2559-7.

    Article  PubMed  Google Scholar 

  10. De Virgillis F, Di Giovanni S. Lung innervation in the eye of a cytokine storm: neuroimmune interactions and COVID-19. Nat Rev Neurol. 2020;16:645–52. https://doi.org/10.1038/s41582-020-0402-y.

    Article  CAS  Google Scholar 

  11. Campo P, Eguiluz-Gracia I, Salas M, Rodriguez MJ, Perez-Sanchez N, Gonzalez M, Molina A, Mayorga C, Torres MJ, Rondón C. Bronchial asthma triggered by house dust mites in patients with local allergic rhinitis. Allergy. 2019;74(8):1502–10. https://doi.org/10.1111/all.13775.

    Article  CAS  PubMed  Google Scholar 

  12. Kılıç E, Kutlu A, Hastalıkları G, Hastanesi KD, Servisi AI, Hastanesi KD, et al. Does local allergy (entopy) exists in asthma? J Clin Anal Med. 2016. Letters to Editors from 01.02.2016; https://doi.org/10.4328/JCAM.3272.

  13. Campo P, Eguiluz-Gracia I, Bogas G, Salas M, Plaza Seron C, Perez N, Mayorga C, Torres MJ, Shamji MH, Rondón C. Local allergic rhinitis: implications for management. Clin Exp Allergy. 2019;49(1):6–16. https://doi.org/10.1111/cea.13192.

    Article  CAS  PubMed  Google Scholar 

  14. Klimov AV, Kalyuzhin OV, Klimov VV, Sviridova VS. Allergic rhinitis and the phenomenon of entopy. Bull Sib Med. 2020;3:137–43. https://doi.org/10.20538/1682-0363-2020-3-137-143.

    Article  Google Scholar 

  15. Eguiluz-Gracia I, Fernandez-Santamaria R, Testera-Montes A, Ariza A, Campo P, Prieto A, Perez-Sanchez N, Salas M, Mayorga C, Rondon C. Coexistence of nasal reactivity to allergens with and without IgE sensitization in patients with allergic rhinitis. Allergy. 2020;1:1689–98. https://doi.org/10.1111/all.14206.

    Article  CAS  Google Scholar 

  16. Maoz-Segal R, Machnes-Maayan D, Veksler-Offengenden I, Frizinsky S, Hajyahia S, Agmon-Levin N. Local allergic rhinitis: an old story but a new entity. In: Gendeh BS, Turkalj M, editors. Rhinosinusitis. London: IntechOpen; 2019. p. 1–9. https://doi.org/10.5772/intechopen.86212.

    Chapter  Google Scholar 

  17. Yamana Y, Fukuda K, Ko R, Uchio E. Local allergic conjunctivitis: a phenotype of allergic conjunctivitis. Int Ophthalmol. 2019;39:2539–44. https://doi.org/10.1007/s10792-019-01101-z.

    Article  PubMed  Google Scholar 

  18. Cuevas J. Neurotransmitters and their life cycle. 2019. Access: http://www.sciencedirect.com/science/article/pii/B9780128012383113182.; https://doi.org/10.1016/B978-0-12-801238-3.11318-2.

  19. Ortiz GG, Loera-Rodriguez LH, Cruz-Serrano JA, Torres-Sanchez ED, Mora-Navarro MA, Delgado-Lara DLC, et al. Gut-brain axis: role of microbiota in Parkinson’s disease and multiple sclerosis. In: Artis AS, editor. Eat, learn, remember. London: IntechOpen; 2018. p. 11–30. https://doi.org/10.5772/intechopen.79493.

    Chapter  Google Scholar 

  20. Hodo TW, de Aquino MTP, Shimamoto A, Shanker A. Critical neurotransmitters in the neuroimmune network. Front Immunol. 2020;11:1869. https://doi.org/10.3389/fimmu.2020.01869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kabata H, Artis D. Neuro-immune crosstalk and allergic inflammation. J Clin Invest. 2019;129(4):1475–82. https://doi.org/10.1172/JCI124609.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Niezgoda M, Kasacka I. Gastrointestinal neuroendocrine cells in various types of hypertension – a review. Prog Health Sci. 2017;7(2):117–25. https://doi.org/10.5604/01.3001.0010.7860.

    Article  CAS  Google Scholar 

  23. Noguchi M, Furukawa KT, Morimoto M. Pulmonary neuroendocrine cells: physiology, tissue homeostasis and disease. Dis Model Mech. 2020;13(12):dmm046920. https://doi.org/10.1242/dmm.046920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Modasia A, Parker A, Jones E, Stentz R, Brion A, Goldson A, et al. Regulation of enteroendocrine cell networks by the major human gut symbiont Bacteroides thetaiotaomicron. Front Microbiol. 2020;11:575595. https://doi.org/10.3389/fmicb.2020.575595.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bankova LG, Barrett NA. Epithelial cell function and remodeling in nasal polyposis. Ann Allergy Asthma Immunol. 2020;124:333–41. https://doi.org/10.1016/j.anai.2020.01.018.

    Article  CAS  PubMed  Google Scholar 

  26. Kerage D, Sloan EK, Mattarollo SR, McCombe PA. Interaction of neurotransmitters and neurochemicals with lymphocytes. J Neuroimmunol. 2019;332:99–111. https://doi.org/10.1016/j.jneuroim.2019.04.006.

    Article  CAS  PubMed  Google Scholar 

  27. Hampel L, Lau T. Neurobiological principles: neurotransmitters. In: Riederer P, Laux G, Mulsant B, Le W, Nagatsu T, editors. NeuroPsychopharmacotherapy. Cham: Springer; 2020. p. 1–21. https://doi.org/10.1007/978-3-319-56015-1_365-1.

    Chapter  Google Scholar 

  28. Wilkinson M, Brown R. Neurotransmitters. In: An introduction to neuroendocrinology. Cambridge: Cambridge University Press; 2015. p. 78–119. https://doi.org/10.1017/CBO9781139045803.006.

    Chapter  Google Scholar 

  29. Meriney SD, Fanselow EE. Gaseous neurotransmitters. In: Meriney SD, Fanselow EE, editors. Synaptic transmission, Chapter 20. Cambridge: Academic Press; 2019. p. 435–47. https://doi.org/10.1016/B978-0-12-815320-8.00020-X.

  30. Elphick MR, Mirabeau O, Larhammar D. Evolution of neuropeptide signalling systems. J Exp Biol. 2018;221(3):1–27. https://doi.org/10.1242/jeb.151092.

    Article  Google Scholar 

  31. Silva-Vilches C, Ring S, Mahnke K. ATP and its metabolite adenosine as regulators of dendritic cell activity. Front Immunol. 2018;9:2581. https://doi.org/10.3389/fimmu.2018.02581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fogaça MV, Lisboa SF, Aguilar DC, Moreira FA, Gomes FV, Casarotto PC, Guimarães FS. Fine-tuning of defensive behaviors in the dorsal periaqueductal gray by atypical neurotransmitters. Braz J Med Biol Res. 2011;45(4):357–65. https://doi.org/10.1590/S0100-879X2012007500029.

    Article  Google Scholar 

  33. McEnery MW, Siegal RE. Neurotransmitter receptors. In: Aminoff MJ, Daroff RB, editors. Encyclopedia of the neurological sciences. Oxford: Elsevier/Academic Press; 2014. p. 552–64. https://doi.org/10.1016/B978-0-12-385157-4.00044-0.

    Chapter  Google Scholar 

  34. Catterall WA. Ion channel voltage sensors: structure, function, and pathophysiology. Neuron. 2010;67(6):915–28. https://doi.org/10.1016/j.neuron.2010.08.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Choudhury A, Sahu T, Ramanujam PL, Banerjee AK, Chakraborty I, Kumar AR, Arora N. Neurochemicals, behaviours and psychiatric perspectives of neurological diseases. Neuropsychiatry. 2018;8(1):395–424. https://doi.org/10.4172/Neuropsychiatry.1000361.

    Article  Google Scholar 

  36. Carlton SM. Nociceptive primary afferents: they have a mind of their own. J Physiol. 2014;592(16):3403–11. https://doi.org/10.1113/jphysiol.2013.269654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bosmans G, Bassi GS, Florens M, Gonzalez-Dominguez E, Matteoli G, Boeckxstaens GE. Cholinergic modulation of type 2 immune responses. Front Immunol. 2017;8:1873. https://doi.org/10.3389/fimmu.2017.01873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gori S, Vermeulen M, Remes-Lenicov F, Jancic C, Scordo W, Caballos A, et al. Acetylcholine polarizes dendritic cells toward a Th2-promoting profile. Allergy. 2017;72(2):221–31. https://doi.org/10.1111/all.12926.

    Article  CAS  PubMed  Google Scholar 

  39. Saunders CJ, Christensen M, Finger TE, Tizzano M. Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. PNAS. 2014;111(16):6075–80. https://doi.org/10.1073/pnas.1402251111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang W, Cohen JA, Wallrapp A, Trieu KG, Barrios J, Shao F, et al. Age-related dopaminergic innervation augments T helper 2-type allergic inflammation in the postnatal lung. Immunity. 2019;51:1102–1118.e7. https://doi.org/10.1016/j.immuni.2019.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weng M, Xie X, Liu C, Lim K-L, Zhang C-W, Li L. The sources of reactive oxygen species and its possible role in the pathogenesis of Parkinson's disease. Parkinsons Dis. 2018;2018:9163040. https://doi.org/10.1155/2018/9163040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klimov VV. Adaptive immune responses. In: From basic to clinical immunology. Cham: Springer; 2019. https://doi.org/10.1007/978-3-030-03323-6.

    Chapter  Google Scholar 

  43. Samuels A. Dose dependent toxicity of glutamic acid: a review. Int J Food Prop. 2020;23(1):412–9. https://doi.org/10.1080/10942912.2020.1733016.

    Article  CAS  Google Scholar 

  44. Contreras Healey DC, Cephus JY, Barone SM, Chowdhury NU, Dahunsi DO, Madden MZ, et al. Targeting in vivo metabolic vulnerabilities of Th2 and Th17 cells reduces airway inflammation. J Immunol. 2021;206(6):1127–39. https://doi.org/10.4049/jimmunol.2001029.

    Article  CAS  Google Scholar 

  45. Lee H-S, Goh E-K, Wang S-G, Chon K-M, Kim H-K, Roh H-J. Detection of amino acids in human nasal mucosa using microdialysis technique: increased glutamate in allergic rhinitis. Asian Pac J Allergy. 2006;23(4):213–9. Access: https://www.researchgate.net/publication/7206172

  46. Alim MA, Grujic M, Ackerman PW, Kristiansson P, Eliasson P, Peterson M, Pejler G. Glutamate triggers the expression of functional ionotropic and metabotropic glutamate receptors in mast cells. Cell Mol Immunol. 2020;17(10):1117. https://doi.org/10.1038/s41423-020-0421-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gupta K, Harvima IT. Mast cell-neural interactions contribute to pain and itch. Immunol Rev. 2018;282(1):168–87. https://doi.org/10.1111/imr.12622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Saeki M, Nishimura T, Kaminuma O, Ohtsu H, Mori A, Hiroi T. Crosstalk between histamine and T cells in allergic diseases. Curr Immunol Rev. 2016;12(1):10–3. https://doi.org/10.2174/1573395511666150706180936.

    Article  CAS  Google Scholar 

  49. Thangam EB, Jemima EA, Singh H, Baig MS, Khan M, Mathias CB, et al. The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: the hunt for new therapeutic targets. Front Immunol. 2018;9:1873. https://doi.org/10.3389/fimmu.2018.01873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Scammell TE, Jackson AC, Franks NP, Wisden W, Dauvilliers Y. Histamine: neural circuits and new medications. Sleep. 2019;42(1):1–8. https://doi.org/10.1093/sleep/zsy183.

    Article  Google Scholar 

  51. Bérczi I, Stephano A. Vasopressin, the acute phase response and healing. In: Insights to neuroimmune biology. Elsevier; 2016. p. 185–99. https://doi.org/10.1016/B978-0-12-801770-8.00008-2.

    Chapter  Google Scholar 

  52. Quintanar-Stephano A, Campos-Rodríges R, Kovacs K. Vasopressin and immune function. Adv Neuroimmune Biol. 2011;1(2):143–56. https://doi.org/10.3233/NIB-2011-029.

    Article  Google Scholar 

  53. Palin K, Moreau ML, Sauvant J, Orcel H, Nadjar A, Rabié A, Show FM. Interleukin-6 activates arginine vasopressin neurons in the supraoptic nucleus during immune challenge in rats. Am J Physiol Endocrinol Metab. 2009;296(6):E1289–99. https://doi.org/10.1152/ajpendo.90489.2008.

    Article  CAS  PubMed  Google Scholar 

  54. Marseglia L, D'Angelo G, Manti S, Salpietro C, Arrigo T, Barberi I, et al. Melatonin and atopy: role in atopic dermatitis and asthma. Int J Mol Sci. 2014;15(8):13482–93. https://doi.org/10.3390/ijms150813482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guan R, Malkani RG. Melatonin, sleep, and allergy. In: Fishbein A, Sheldon S, editors. Allergy and sleep. Cham: Springer; 2019. p. 367–84. https://doi.org/10.1007/978-3-030-14738-9_272019.

    Chapter  Google Scholar 

  56. Hardeland R. Melatonin and inflammation - story of a double-edged blade. J Pineal Res. 2018;65(4):e12525. https://doi.org/10.1111/jpi.12525.

    Article  CAS  PubMed  Google Scholar 

  57. Luo J, Zhang Z, Sun H, Song J, Chen X, Huang J, Lin X, Zhou R. Effect of melatonin on T/B cell activation and immune regulation in pinealectomy mice. Life Sci. 2020;242:117191. https://doi.org/10.1016/j.lfs.2019.117191.

    Article  CAS  PubMed  Google Scholar 

  58. Mashaghi A, Marmalidou A, Tehrani M, Grace PT, Pothoulakis C, Dana R. Neuropeptide substance P and the immune response. Cell Mol Life Sci. 2016;73(22):4249–64. https://doi.org/10.1007/s00018-016-2293-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vena GA, Cassano N, Di Leo E, Calogiuri GF, Nettis E. Focus on the role of substance P in chronic urticaria. Clin Mol Allergy. 2018;16:24. https://doi.org/10.1186/s12948-018-0101-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Perner C, Flayer CH, Zhu X, Aderhold PA, ZNA D, Voisin T, et al. Substance P release by sensory neurons triggers dendritic cell migration and initiates the type-2 immune response to allergens. Immunity. 2020;53(5):1063–77.e7. https://doi.org/10.1016/j.immuni.2020.10.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour RE, Nyman J, Dionne D, et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature. 2017;549:351–6. https://doi.org/10.1038/nature24029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ren X, Dong F, Zhuang Y, Wang Y, Ma W. Effect of neuromedin U on allergic airway inflammation in an asthma model (review). Exp Ther Med. 2020;19(2):809–16. https://doi.org/10.3892/etm.2019.8283.

    Article  CAS  PubMed  Google Scholar 

  63. Ye Y, Hue L. The potential role of neuromedin U in human type-2 immunity. Eur Respir J. 2019;54(Suppl 63):OA1626. https://doi.org/10.1183/13993003.congress-2019.OA1626.

    Article  Google Scholar 

  64. Pongratz G, Straub RH. The sympathetic nervous response in inflammation. Arthritis Res Ther. 2014;16(6):504. http://arthritis-research.com/content/16/6/504.

    Article  Google Scholar 

  65. Moriyama S, Brestoff JR, Flamar AL, Moeller JB, Klose CSN, Rankin LC, et al. Beta2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science. 2018;359:1056–61. https://doi.org/10.1126/science.aan4829.

    Article  CAS  PubMed  Google Scholar 

  66. Yao A, Wilson JA, Ball SL. Autonomic nervous system dysfunction and sinonasal symptoms. Allergy Rhinol (Providence). 2018;9:1–9. https://doi.org/10.1177/2152656718764233.

    Article  Google Scholar 

  67. Herr N, Bode C, Duerschmied D. The effects of serotonin in immune cells. Front Cardiovasc Med. 2017;4:48. https://doi.org/10.3389/fcvm.2017.00048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shajib MS, Khan WI. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol (Oxford). 2015;213:561–74. https://doi.org/10.1111/apha.12430.

    Article  CAS  Google Scholar 

  69. Švajger U, Rožman P. Induction of tolerogenic dendritic cells by endogenous biomolecules: an update. Front Immunol. 2018;9:2482. https://doi.org/10.3389/fimmu.2018.02482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nau F, Miller J, Saravia J, Ahlert T, Yu B, Happel K, Cormier S, Nichols C. Serotonin 5-HT2 receptor activation prevents allergic asthma in a mouse model. Am J Physiol Lung Cell Mol Physiol. 2015;308(2):L191–8. https://doi.org/10.1152/ajplung.00138.2013.

    Article  CAS  PubMed  Google Scholar 

  71. Schneider E, Machavoine F, Bricard-Rignault R, Levasseur M, Petit-Bertron AF, Gautron S, et al. Downregulation of basophil-derived IL-4 and in vivo T(H)2 IgE responses by serotonin and other organic cation transporter 3 ligands. J Allergy Clin Immunol. 2011;128(4):864–71.e2. https://doi.org/10.1016/j.jaci.2011.04.043.

    Article  CAS  PubMed  Google Scholar 

  72. Dionisio L, De Rosa MJ, Bouzat C, MDC E. An intrinsic GABAergic system in human lymphocytes. Neuropharmacology. 2011;60(2–3):513–9. https://doi.org/10.1016/j.neuropharm.2010.11.007.

    Article  CAS  PubMed  Google Scholar 

  73. Jin Z, Mendu SK, Birnir B. GABA is an effective immunomodulatory molecule. Amino Acids. 2013;45(1):87–94. https://doi.org/10.1007/s00726-011-1193-7.

    Article  CAS  PubMed  Google Scholar 

  74. Xiang Y-Y, Wang S, Liu M, Hirota JA, Li J, Ju W, et al. A GABAergic system in airway epithelium is essential for mucus overproduction in asthma. Nat Med. 2007;13(7):862–7. https://doi.org/10.1038/nm1604.

    Article  CAS  PubMed  Google Scholar 

  75. Barragan A, Weidner JM, Jin Z, Korpi ER, Birnir B. GABAergic signalling in the immune system. Acta Physiol. 2015;213(4):819–27. https://doi.org/10.1111/apha.12467.

    Article  CAS  Google Scholar 

  76. Munroe ME, Businga TR, Kline JN, Dishop GA. Anti-inflammatory effects of the neurotransmitter agonist honokiol in a mouse model of allergic asthma. J Immunol. 2010;185:5586–97. https://doi.org/10.4049/jimmunol.1000630.

    Article  CAS  PubMed  Google Scholar 

  77. Dimić D, Timotijevic L, Nicolic I, Zdravkovic A, Nikcevic L, Dimic N, Simeunovic I. Effects of GABA on lung function in asthmatics after methacholine inhalation. Eur Respir J. 2017;50(Suppl 61):PA3574. https://doi.org/10.1183/1393003.congress-2017.PA3574.

    Article  Google Scholar 

  78. Razak MA, Begum PS, Viswanath B, Rajagopal S. Multifarious beneficial effect of nonessential amino acid, glycine: a review. Oxidative Med Cell Longev. 2017;2017:1716701. https://doi.org/10.1155/2017/1716701.

    Article  CAS  Google Scholar 

  79. Breitinger U, Breitinger H-G. Modulators of the inhibitory glycine receptor. ACS Chem Neurosci. 2020;11(12):1706–25. https://doi.org/10.1021/acschemneuro.0c00054.

    Article  CAS  PubMed  Google Scholar 

  80. den Eynden JV, Ali SS, Horwood N, Carmans S, Brône B, Hellings N, et al. Glycine and glycine receptor signalling in non-neuronal cells. Front Mol Neurosci. 2009;2:9. https://doi.org/10.3389/neuro.02.009.2009.

    Article  CAS  PubMed  Google Scholar 

  81. Weinberg JM, Venkatachalam MA, Bienholz A. The role of glycine in regulated cell death. Cell Mol Life Sci. 2016;73(11–12):2285–308. https://doi.org/10.1007/s00018-016-2201-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Moberg KU, Handlin L, Kendall-Tackett K, Petersson M. Oxytocin is a principal hormone that exerts part of its effects by active fragments. Med Hypotheses. 2019;133:1–9. https://doi.org/10.1016/j.mehy.2019.109394.

    Article  CAS  Google Scholar 

  83. Li T, Wang P, Wang SC, Wang Y-F. Approaches mediating oxytocin regulation of the immune system. Front Immunol. 2017;7:693. https://doi.org/10.3389/fimmu.2016.00693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang Y-F. Center role of the oxytocin-secreting system in neuroendocrine-immune network revisited. J Clin Exp Neuroimmunol. 2016;1(1):102.

    Google Scholar 

  85. Wallrapp A, Burkett PR, Riesenfeld SJ, Kim SJ, Christian E, Abdulnour RE, et al. Calcitonin gene-related peptide negatively regulates alarmin-driven type 2 innate lymphoid cell responses. Immunity. 2019;51:709–23.e6. https://doi.org/10.1016/j.immuni.2019.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nagashima H, Mahlakoiv T, Shih HY, Davis FP, Meylan F, Huang Y, et al. Neuropeptide CGRP limits group 2 innate lymphoid cell responses and constrains type 2 inflammation. Immunity. 2019;51:682–95.e6. https://doi.org/10.1016/j.immuni.2019.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ochoa-Callejero L, Garcia-Sanmartin J, Villoslada-Blanco P, Iniguez M, Perez-Matute P, Pujadas E, et al. Circulating levels of calcitonin gene-related peptide are lower in COVID-19 patients. J Endocr Soc. 2021;5(3):199. https://doi.org/10.1210/jendso/bvaa199.

    Article  CAS  Google Scholar 

  88. Iwasaki M, Akiba Y, Kaunitz JD. Recent advances in vasoactive intestinal peptide physiology and pathophysiology: focus on the gastrointestinal system. F1000Res. 2019;8:1629. https://doi.org/10.12688/f1000research.18039.1.

    Article  CAS  Google Scholar 

  89. Watanabe J. Vasoactive intestinal peptide. In: Takei Y, Ando H, Tsutsui K, editors. Handbook of hormones. Oxford: Academic Press; 2016. p. 150–2. https://doi.org/10.1016/B978-0-12-801028-0.00146-X.

    Chapter  Google Scholar 

  90. Raker VK, Domogalla MP, Steinbrink K. Tolerogenic dendritic cells for regulatory T cell induction in man. Front Immunol. 2015;6:569. https://doi.org/10.3389/fimmu.2015.00569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sallaberry CA, Astern L. The endocannabinoid system, our universal regulator. J Young Investig. 2018;34(6):48–55. https://doi.org/10.22186/jyi.34.5.48-55.

    Article  Google Scholar 

  92. Dhital S, Stokes JV, Park N, Seo KS, Kaplan BLF. Cannabidiol (CBD) induces functional Tregs in response to low-level T cell activation. Cell Immunol. 2017;312:25–34. https://doi.org/10.1016/j.cellimm.2016.11.006.

    Article  CAS  PubMed  Google Scholar 

  93. Liang X, Liu R, Chen C, Ji F, Li T. Opioid system modulates the immune function: a review. Transl Perioper Pain Med. 2016;1(1):5–13. Access: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4790459/.

  94. Ironside M, Kumar P, Kang M-S, Pizzagalli DA. Brain mechanisms mediating effects of stress on reward sensitivity. Curr Opin Behav Sci. 2018;22:106–13. https://doi.org/10.1016/j.cobeha.2018.01.016.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Shrihari TG. Endorphins – a natural healer. J Cancer Prev Curr Res. 2018;9(5):223–34.

    Google Scholar 

  96. Sha J, Meng C, Li L, Xiu Q, Zhu D. Correlation of serum b-endorphin and the quality of life in allergic rhinitis. Dis Markers. 2016:2025418. https://doi.org/10.1155/2016/2025418.

  97. Mancuso C, Navarra P, Preziosi P. Roles of nitric oxide, carbon monoxide, and hydrogen sulfide in the regulation of the hypothalamic–pituitary–adrenal axis. J Neurochem. 2010;113:563–75. https://doi.org/10.1111/j.1471-4159.2010.06606.x.

    Article  CAS  PubMed  Google Scholar 

  98. Fagone P, Mazzon E, Bramanti P, Bendtzen K, Nicoletti F. Gasotransmitters and the immune system: mode of action and novel therapeutic targets. Eur J Pharmacol. 2018;834:92–102. https://doi.org/10.1016/j.ejphar.2018.07.026.

    Article  CAS  PubMed  Google Scholar 

  99. Oleskin AV, Shenderov BA. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microb Ecol Health Dis. 2016;27:30971. https://doi.org/10.3402/mehd.v27.30971.

    Article  CAS  PubMed  Google Scholar 

  100. Deshane J, Zmijewski JW, Luther R, Gaggar A, Deshane R, Lai J-F, et al. Free radical-producing myeloid-derived regulatory cells: potent activators and suppressors of lung inflammation and airway hyperresponsiveness. Mucosal Immunol. 2011;4:503–18. https://doi.org/10.1038/mi.2011.16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bratt JM, Franzi LM, Linderholm AL, Last MS, Kenyon NJ, Last JA. Arginase enzymes in isolated airways from normal and nitric oxide synthase 2-knockout mice exposed to ovalbumin. Toxicol Appl Pharmacol. 2009;234(3):273–80. https://doi.org/10.1016/j.taap.2008.10.007.

    Article  CAS  PubMed  Google Scholar 

  102. Garcia-Garcia L, Olle L, Martin M, Roca-Ferrer J, Munoz-Cano R. Adenosine signaling in mast cells and allergic diseases. Int J Mol Sci. 2021;22:5203. https://doi.org/10.3390/ijms22105203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Matsuo Y, Yanase Y, Irifuku R, Ishii K, Kawaguchi T, Takahagi S, Hide I, Hide M. The role of adenosine for IgE receptor-dependent degranulation of human peripheral basophils and skin mast cells. Allergol Int. 2018;67:524–6. https://doi.org/10.1016/j.alit.2018.03.007.

    Article  CAS  PubMed  Google Scholar 

  104. Pondeljak N, Lugović-Mihić L. Stress-induced interaction of skin immune cells, hormones, and neurotransmitters. Clin Ther. 2020;42(5):757–70. https://doi.org/10.1016/j.clinthera.2020.03.008.

    Article  CAS  PubMed  Google Scholar 

  105. Assas BM, Pennock JI, Miyan JA. Calcitonin gene-related peptide is a key neurotransmitter in the neuro-immune axis. Front Neurosci. 2014;8:23. https://doi.org/10.3389/fnins.2014.00023.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Auteri M, Zizzo MG, Serio R. GABA and GABA receptors in the gastrointestinal tract: from motility to inflammation. Pharmacol Res. 2015;93:11–21. https://doi.org/10.1016/j.phrs.2014.12.001.

    Article  CAS  PubMed  Google Scholar 

  107. Graziottin A, Giraldi A. Anatomy and physiology of women’s sexual function. In: Porst H, Buvat J, editors. Standard practice in Sexual Medicine, Chapter 19. Oxford: Blackwell; 2006. p. 289–304.

    Google Scholar 

  108. Calabrò RS, Cacciola A, Bruschetta D, Milardi D, Quattrini F, Sciarrone F, et al. Neuroanatomy and function of human sexual bahavior: a neglected or unknown issue? Brain Behav. 2019;9:e01389. https://doi.org/10.1002/brb3.1389.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Anvari S, Vyhlidal CA, Dai H, Jones BL. Genetic variation along the histamine pathway in children with allergic versus nonallergic asthma. Am J Respir Cell Mol Biol. 2015;53:802–9. https://doi.org/10.1165/rcmb.2014-0493OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yamauchi K, Shikanai T, Nakamura Y, Kobayashi H, Ogasawara M, Maeyama K. Roles of histamine in the pathogenesis of bronchial asthma and reevaluation of the clinical usefulness of antihistamines. Yakugaku Zasshi. 2011;131:185–91. https://doi.org/10.1248/yakushi.131.185.

    Article  CAS  PubMed  Google Scholar 

  111. Chen L, Hong C, Chen EC, Yee SW, Xu L, Almof EU, et al. Genetics and epigenetic regulation of the organic cation transporter 3, LC22A3. Pharm J. 2013;13:110–20. https://doi.org/10.1038/tpj.2011.60.

    Article  CAS  Google Scholar 

  112. Ohtsu H, Tanaka S, Terui T, Hori Y, Makabe-Kobayashi Y, Pejler G, et al. Mice lacking histidine decarboxylase exhibit abnormal mast cells. FEBS Lett. 2001;502:53–6. https://doi.org/10.1016/S0014-5793(01)02663-1.

    Article  CAS  PubMed  Google Scholar 

  113. Wen Y, Wang J, Zhang Q, Chen Y, Bao X. The genetic and clinical characteristics of aromatic L-amino acid decarboxylase deficiency in mainland China. J Hum Genet. 2020;65:759–69. https://doi.org/10.1038/s10038-020-0770-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. McKinney J, Johansson S, Halmoy A, Dramsdahl M, Winge I, Knappskog PM, et al. A loss-of-function mutation in tryptophan hydroxylase 2 segregating with attention-deficit/hyperactivity disorder. Mol Psychiatry. 2008;13:365–7. https://doi.org/10.1038/sj.mp.4002152.

    Article  CAS  PubMed  Google Scholar 

  115. Wang L-J, Yu Y-H, Fu M-L, Yeh W-T, Hsu J-L, Yang Y-H, et al. Attention deficit–hyperactivity disorder is associated with allergic symptoms and low levels of hemoglobin and serotonin. Sci Rep. 2018;8:10229. https://doi.org/10.1038/s41598-018-28702-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Le DD, Schmit D, Heck S, Omlor AJ, Sester M, Herr C, et al. Increase of mast cell-nerve association and neuropeptide receptor expression on mast cells in perennial allergic rhinitis. Neuroimmunomodulation. 2016;23:261–70. https://doi.org/10.1159/000453068.

    Article  CAS  PubMed  Google Scholar 

  117. Thornton MA, Akasheh N, Walsh MT, Moloney M, Sheahan PO, Smyth CM, et al. Eosinophil recruitment to nasal nerves after allergen challenge in allergic rhinitis. Clin Immunol. 2013;147:50–7. https://doi.org/10.1016/j.clim.2013.02.008.

    Article  CAS  PubMed  Google Scholar 

  118. Sarin S, Undem B, Sanico A, Togias A. The role of the nervous system in rhinitis. J Allergy Clin Immunol. 2006;118(5):999–1014. https://doi.org/10.1016/j.jaci.2006.09.013.

    Article  PubMed  Google Scholar 

  119. Skaper SD. Nerve growth factor: a neuroimmune crosstalk mediator for all seasons. Immunology. 2017;151(1):1–15. https://doi.org/10.1111/imm.12717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Klimov .

4.1 Electronic Supplementary Material

Functional organization of the neuroimmune network (MP4 60147 kb)

Audio 4.1

(MP3 16028 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klimov, V.V. (2022). The Role of the Neuroimmune Network in Allergic Inflammation. In: Textbook of Allergen Tolerance . Springer, Cham. https://doi.org/10.1007/978-3-031-04309-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04309-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04308-6

  • Online ISBN: 978-3-031-04309-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics