Skip to main content

Immune Tolerance at a Glance

  • Chapter
  • First Online:
Textbook of Allergen Tolerance
  • 333 Accesses

Abstract

This chapter focuses on immune tolerance, the antipode of the adaptive immune response. The main mechanisms and participants of central and peripheral tolerance are considered at a glance, taking into account the current presentation of allergen tolerance. This topic has always been complex in basic immunology; therefore, we tried to describe tolerance processes in a simple but thorough manner. Commonly, the immune system is tolerant to self-antigens, antigens of its own symbiotic and opportunistic microbes in the steady-state, food proteins, environmental allergens, and male antigens (inside women). In addition, however, there are such events as tolerance maintenance and breakdown, pathologic and artificial tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogovskii V. Immune tolerance as the physiologic counterpart of chronic inflammation. Front Immunol. 2020;11:2061. https://doi.org/10.3389/fimmu.2020.02061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jensen-Jarolim E, Baz HJ, Bianchini R, Crescioli S, Daniels-Wells TR, Dombrowicz D, et al. AllergoOncology: opposite outcomes of immune tolerance in allergy and cancer. Allergy. 2018;73:328–40. https://doi.org/10.1111/all.13311.

    Article  CAS  PubMed  Google Scholar 

  3. Wisniewski J, Agrawal R, Woodfolk JA. Mechanisms of tolerance induction in allergic disease: integrating current and emerging concepts. Clin Exp Allergy. 2013;43(2):164–76. https://doi.org/10.1111/cea.12016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Calderón MA, Linneberg A, Kleine-Tebbe J, De Bay F, de Rojas DHF, Virchow JC. Respiratory allergy caused by house dust mites: what do we really know? J Allergy Clin Immunol. 2015;136(1):38–47. https://doi.org/10.1016/j.jaci.2014.10.012.

    Article  PubMed  Google Scholar 

  5. Burnet MF. Immunological recognition of self: Nobel lecture. Nobel Foundation; 1960. Archived from the original on 15 Dec 2010.

    Google Scholar 

  6. Burnet MF. The clonal selection theory of acquired immunity. Nashville, TN: Vanderbilt University Press; 1959.

    Book  Google Scholar 

  7. Klimov VV. Adaptive immune response. In: From basic to clinical immunology. Cham: Springer; 2019. https://doi.org/10.1007/978-3-030-03323-4.

    Chapter  Google Scholar 

  8. Goodnow CC, Sprent J, de St Groth BF, Vinuesa CG. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature. 2005;435:590–7. https://doi.org/10.1038/nature03724.

    Article  CAS  PubMed  Google Scholar 

  9. Pucci S, Incorvaia C. Allergy as an organ and a systemic disease. Clin Exp Immunol. 2008;153(Suppl 1):1–2. https://doi.org/10.1111/j.1365-2249.2008.03712.x.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Powe DG, Bonnin AJ, Jones NS. "Entopy": local allergy paradigm. Clin Exp Allergy. 2010;40(7):987–97. https://doi.org/10.1111/j.1365-2222.2010.03536.x.

    Article  CAS  PubMed  Google Scholar 

  11. Waldmann H. Immunological tolerance. In: Reference module in biomedical sciences. Oxford: Elsevier; 2014. p. 1–7. https://doi.org/10.1016/B978-0-12-801238-3.00116-1.

    Chapter  Google Scholar 

  12. Waldmann H, Adams E, Cobbold S. Reprogramming the immune system: co-receptor blockade as a paradigm for harnessing tolerance mechanisms. Immunol Rev. 2008;223(1):361–70. https://doi.org/10.1111/j.1600-065X.2008.00632.x.

    Article  CAS  PubMed  Google Scholar 

  13. Zouali M. Immunological tolerance: mechanisms. In: eLS. Paris: Wiley; 2007. p. 1–9. https://doi.org/10.1002/9780470015902.a0000950.pub2.

    Chapter  Google Scholar 

  14. Audiger C, Rahman MJ, Yun TJ, Tarbell KV, Lesage S. The importance of dendritic cells in maintaining immune tolerance. J Immunol. 2017;198:2223–31. https://doi.org/10.4049/jimmunol.1601629.

    Article  CAS  PubMed  Google Scholar 

  15. Iberg CA, Hawiger D. Natural and induced tolerogenic dendritic cells. J Immunol. 2020;204(4):733–44. https://doi.org/10.4049/jimmunol.1901121.

    Article  CAS  PubMed  Google Scholar 

  16. Raker VK, Domogalla MP, Steinbrink K. Tolerogenic dendritic cells for regulatory T cell induction in man. Front Immunol. 2015;6:569. https://doi.org/10.3389/fimmu.2015.00569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kupriyanov SV, Sinitsky AI, Dolgushin II. Multiple subsets of regulatory T-cells. Bull Sib Med. 2020;19(3):144–55. https://doi.org/10.20538/1682-0363-2020-3-144-155.

    Article  Google Scholar 

  18. Shevyrev D, Tereshchenko V. Treg heterogeneity, function, and homeostasis. Front Immunol. 2020;10:3100. https://doi.org/10.3389/fimmu.2019.03100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee W, Lee GR. Transcriptional regulation and development of regulatory T cells. Exp Mol Med. 2018;50:e456. https://doi.org/10.1038/emm.2017.313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ohkura N, Kitagawa Y, Sakaguchi S. Development and maintenance of regulatory T cells. Immunity. 2013;38(3):414–23. https://doi.org/10.1016/j.immuni.2013.03.002.

    Article  CAS  PubMed  Google Scholar 

  21. Abebe EC, Dejenie TA, Ayele TM, Baye ND, Teshome AA, Muche ZT. The role of regulatory B cells in health and diseases: a systemic review. J Inflamm Res. 2021;14:75–84. https://doi.org/10.2147/JIR.S286426.

    Article  Google Scholar 

  22. Bluestone JA, Bour-Jordan H, Cheng M, Anderson M. T cells in the control of organ-specific autoimmunity. J Clin Invest. 2015;125(6):2250–60. https://doi.org/10.1172/JCI78089.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Сommins SP, Borish L, Steinke JW. Immunologic messenger molecules: cytokines, interferons, and chemokines. J Allergy Clin Immunol. 2010;125(2):S53–72. https://doi.org/10.1016/j.jaci.2009.07.008.

    Article  Google Scholar 

  24. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704. https://doi.org/10.1146/annurev.immunol.26.021607.090331.

    Article  CAS  PubMed  Google Scholar 

  25. Mangalam AK, Ochoa-Reparaz JO. Editorial: the role of the gut microbiota in health and inflammatory diseases. Front Immunol. 2020;11:565305. https://doi.org/10.3389/fimmu.2020.565305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vitetta L, Vitetta G, Hall S. Immunological tolerance and function: associations between intestinal bacteria, probiotics, prebiotics, and phages. Front Immunol. 2018;9:2240. https://doi.org/10.3389/fimmu.2018.02240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity. 2017;46:562–76. https://doi.org/10.1016/j.immuni.2017.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiao Y, Wu L, Huntington ND, Zhang X. Crosstalk between gut microbiota and innate immunity and its implication in autoimmune diseases. Front Immunol. 2020;11:282. https://doi.org/10.3389/fimmu.2020.00282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pobezinsky LA, Angelov GS, Tai X, Jeurling S, Van Laethem F, Feigenbaum L, Park J-H, Singer A. Clonal deletion and the fate of autoreactive thymocytes that survive negative selection. Nat Immunol. 2012;13:569–78. https://doi.org/10.1038/ni.2292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Labrecque N, Baldwin T, Lesage S. Molecular and genetic parameters defining T-cell clonal selection. Immunol Cell Biol. 2011;89(1):16–26. https://doi.org/10.1038/icb.2010.119.

    Article  CAS  PubMed  Google Scholar 

  31. Perniola R, Musco G. The biophysical and biochemical properties of the autoimmune regulator (AIRE) protein. Biochem Biophys Acta. 2014;1842(2):326–37. https://doi.org/10.1016/j.bbadis.2013.11.020.

    Article  CAS  PubMed  Google Scholar 

  32. Nemazee D. Mechanisms of central tolerance for B cells. Nat Rev Immunol. 2017;17(5):281–94. https://doi.org/10.1038/nri.2017.19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pillai S, Mattoo H, Cariappa A. B cells and autoimmunity. Curr Opin Immunol. 2011;23(6):721–31. https://doi.org/10.1016/j.coi.2011.10.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Arakaki R, Yamada A, Kudo Y, Hayashi Y, Eshimaru N. Mechanism of activation-induced cell death of T cells and regulation of FasL expression. Crit Rev Immunol. 2014;34(4):301–14. https://doi.org/10.1615/critrevimmunol.2014009988.

    Article  CAS  PubMed  Google Scholar 

  35. Badami E, Cexus ONF, Quaratino S. Activation-induced cell death of self-reactive regulatory T cells drives autoimmunity. PNAS. 2019;116(52):26788–97. https://doi.org/10.1073/pnas.1910281116.

    Article  CAS  PubMed Central  Google Scholar 

  36. Müeller DL. Anergy. In: AccessScience. Columbus, OH: McGraw-Hill Education; 2019. https://doi.org/10.1036/1097-8542.033880.

    Chapter  Google Scholar 

  37. von Knethen A. Costimulatory receptors. In: Parnham MJ, editor. Compendium of inflammatory diseases. Basel: Springer; 2016. https://doi.org/10.1007/978-3-7643-8550-7_101.

    Chapter  Google Scholar 

  38. Watanabe M, Lu Y, Breen M, Hodes RJ. B7-CD28 co-stimulation modulates central tolerance via thymic clonal deletion and Treg generation through distinct mechanisms. Nat Commun. 2020;11:6264. https://doi.org/10.1038/s41467-020-20070-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wikenheiser DJ, Stumhofer JS. ICOS co-stimulation: friend or foe? Front Immunol. 2016;7:304. https://doi.org/10.3389/fimmu.2016.00304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–42. https://doi.org/10.1038/nri3405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mitsuiki N, Schwab C, Grimbacher B. What did we learn from CTLA-4 insufficiency on the human immune system? Immunol Rev. 2018;287(1):33–49. https://doi.org/10.1111/imr.12721.

    Article  CAS  Google Scholar 

  42. Jones A, Bourque J, Kuehm L, Opejin A, Teague RM, Gross C, Hawiger D. Immunomodulatory functions of BTLA and HVEM govern induction of extrathymic regulatory T cells and tolerance by dendritic cells. Immunity. 2016;45:1066–77. https://doi.org/10.1016/j.immuni.2016.10.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu S, Xu Liu X, Li T, Li Z, Hu F. LAG3 (CD223) and autoimmunity: emerging evidence. J Autoimmun. 2020;112:102504. https://doi.org/10.1016/j.jaut.2020.102504.

    Article  CAS  PubMed  Google Scholar 

  44. Sage PT, Peterson AM, Lovitch SB, Sharpe AH. The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells. Immunity. 2014;41(6):1026–39. https://doi.org/10.1016/j.immuni.2014.12.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tsubata T. Inhibitory B cell co-receptors and autoimmune diseases. Immunol Med. 2019;42(3):108–16. https://doi.org/10.1080/25785826.2019.1660038.

    Article  PubMed  Google Scholar 

  46. Thorman AS, Schneider T, Cyran L, Eckert IN, Kerstan A, Lutz MB. Conversion of anergic T cells into Foxp3- IL-10+ regulatory T cells by a second antigen stimulus in vivo. Front Immunol. 2021;12:704578. https://doi.org/10.3389/fimmu.2021.704578.

    Article  CAS  Google Scholar 

  47. Parish IA, Heath WR. Too dangerous to ignore: self-tolerance and the control of ignorant autoreactive T cells. Immunol Cell Biol. 2008;86(2):146–52. https://doi.org/10.1038/sj.icb.7100161.

    Article  CAS  PubMed  Google Scholar 

  48. Benhar I, London A, Schwartz M. The privileged immunity of immune privileged organs: the case of the eye. Front Immunol. 2012;3:296. https://doi.org/10.3389/fimmu.2012.00296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang T, Feng X, Han D. Mechanisms of testicular immune privilege. Front Biol. 2011;6:19–30. https://doi.org/10.1007/s11515-011-1010-4.

    Article  CAS  Google Scholar 

  50. Ellias SD, Larson EL, Taner T, Nyberg SL. Cell-mediated therapies to facilitate operational tolerance in liver transplantation. Int J Mol Sci. 2021;22:4016. https://doi.org/10.3390/ijms22084016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nam J-H, Lee J-H, Choi S-Y, Jung N-C, Song J-Y, Seo H-G, et al. Functional ambivalence of dendritic cells: tolerogenicity and immunogenicity. Int J Mol Sci. 2021;22:4430. https://doi.org/10.3390/ijms22094430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Probst HC, Muth S, Schild H. Regulation of the tolerogenic function of steady-state DCs. Eur J Immunol. 2014;44(4):927–33. https://doi.org/10.1002/eji.201343862.

    Article  CAS  PubMed  Google Scholar 

  53. Peters M, Peters K, Bufe A. Regulation of lung immunity by dendritic cells: implications for asthma, chronic obstructive pulmonary disease and infectious disease. Innate Immun. 2019;25(6):326–36. https://doi.org/10.1177/1753425918821732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hasegawa H, Matsumoto T. Mechanisms of tolerance induction by dendritic cells in vivo. Front Immunol. 2018;9:350. https://doi.org/10.3389/fimmu.2018.00350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fucikova J, Palovs-Jelinkova L, Bartunkova J, Spisek R. Induction of tolerance and immunity by dendritic cells: mechanisms and clinical applications. Front Immunol. 2019;10:2393. https://doi.org/10.3389/fimmu.2019.02393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hua J, Inomata T, Chen Y, Foulsham W, Stevenson W, Shiang T, et al. Pathological conversion of regulatory T cells is associated with loss of allotolerance. Sci Rep. 2018;8:7059. https://doi.org/10.1038/s41598-018-25384-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhu L, Ding W, Ding K, Zhang Y, Xu C. The correlation between the Th17/Treg cell balance and bone health. Immun Ageing. 2020;17:30. https://doi.org/10.1186/s12979-020-00202-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wculek S, Cueto FJ, Mujal AM, Melero I, Krummel M, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020;20(1):7–24. https://doi.org/10.1038/s41577-019-0210-z.

    Article  CAS  PubMed  Google Scholar 

  59. Moorman CD, Sohn SJ, Phee H. Emerging therapeutics for immune tolerance: tolerogenic vaccines, T cell therapy, and IL-2 therapy. Front Immunol. 2021;12:657768. https://doi.org/10.3389/fimmu.2021.657768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cifuentes-Rius A, Desai A, Yuen D, Johnson PR, Voelcker NH. Inducing immune tolerance with dendritic cell-targeting nanomedicines. Nat Nanotechnol. 2021;16:37–46. https://doi.org/10.1038/s41565-020-00810-2.

    Article  CAS  PubMed  Google Scholar 

  61. Raffin C, Vo LT, Bluestone JA. Treg cell-based therapies: challenges and perspectives. Nat Rev Immunol. 2020;20:158–72. https://doi.org/10.1038/s41577-019-0232-6.

    Article  CAS  PubMed  Google Scholar 

  62. Mohseni YR, Tung SL, Dudreuilh C, Lechler RI, Fruhwirth GO, Lombardi G. The future of regulatory T cell therapy: promises and challenges of implementing CAR technology. Front Immunol. 2020;11:1608. https://doi.org/10.3389/fimmu.2020.01608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Skuljec J, Chmielewski M, Happle C, Habener A, Busse M, Abken H, Hansen G. Chimeric antigen receptor-redirected regulatory T cells suppress experimental allergic airway inflammation, a model of asthma. Front Immunol. 2017;8:1125. eCollection 2017. https://doi.org/10.3389/fimmu.2017.01125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Klimov .

2.1 Electronic Supplementary Material

Audio 2.1

(MP3 13668 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klimov, V.V. (2022). Immune Tolerance at a Glance. In: Textbook of Allergen Tolerance . Springer, Cham. https://doi.org/10.1007/978-3-031-04309-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04309-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04308-6

  • Online ISBN: 978-3-031-04309-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics