Skip to main content

Dual Educational Engineering Towards the Goals of the 2030 Agenda for Sustainable Development

  • Chapter
  • First Online:
Learning with Technologies and Technologies in Learning

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 456))

  • 966 Accesses

Abstract

The United Nations General Assembly has adopted the 2030 Agenda for Sustainable Development that affects the planet, people and their prosperity, by proposing 17 Sustainable Development Goals (SDGs). A characteristic feature of technologies in the 2030 Horizon is their volatility, and that of competencies and the complexity of the problems to be solved when incorporating the multidimensionality of sustainable objectives. Therefore, by taking into account the achievement of the SDGs proposed by the United Nations, a new fractal model of organization of dual educational practice is proposed, which, together with the concept of fractality, enables the integrated organisation of academic, professional and dual education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Miranda S, Aguayo-González F, Salguero-Gómez J, Ávila-Gutiérrez MJ (2020) Life cycle engineering 4.0: a proposal to conceive manufacturing systems for Industry 4.0 centred on the human factor (DfHFinI4.0). Appl Sci 10. https://doi.org/10.3390/app10134442

  2. Fernández-Miranda SS, Marcos M, Peralta ME, Aguayo F (2017) The challenge of integrating Industry 4.0 in the degree of mechanical engineering. Procedia Manuf. https://doi.org/10.1016/j.promfg.2017.09.039

  3. ManuFUTURE–EU, High-Level Group (2018) ManuFUTURE vision 2030 a competitive, sustainable and resilient European manufacturing

    Google Scholar 

  4. European Commission (2017) Reflection paper on the social dimension of Europe

    Google Scholar 

  5. McKinsey (2017) Jobs lost, jobs gained: workforce transition in a time of automation

    Google Scholar 

  6. Jeganathan L, Khan AN, Kannan Raju J, Narayanasamy S (2018) On a frame work of curriculum for engineering education 4.0. In: Proceedings of the world engineering education forum-950 global engineering deans council WEEF-GEDC; Albuquerque 1–6

    Google Scholar 

  7. Klöber-Koch J, Pielmeier J, Grimm S, Brandt MM, Schneider M, Reinhart G (2017) Knowledge-based decision making in a cyber-physical production scenario. Procedia Manuf 9:167–174. https://doi.org/10.1016/j.promfg.2017.04.014

  8. Vasconcelos P, Furtado ES, Pinheiro P, Furtado L (2020) Multidisciplinary criteria for the quality of e-learning services design. Comput Human Behav 107https://doi.org/10.1016/j.chb.2019.04.003

  9. Tzafestas S (2006) Concerning human-automation symbiosis in the society and the nature. Int J Fact Autom Robot Soft Comput 1:16–24

    Google Scholar 

  10. ManuFUTURE High-Level Group (2018) ManuFUTURE vision 2030

    Google Scholar 

  11. EDUCAUSE (2019) EDUCAUSE horizon report: 2019 higher education edition

    Google Scholar 

  12. Berthoz A (2009) La Simplexité. Odile Jacob, Paris

    Google Scholar 

  13. Kluger J (2008) Simplexity: why simple things become complex (and how complex things can be made simple). Hyperion Books

    Google Scholar 

  14. Velte CJ, Wilfahrt A, Müller R, Steinhilper R (2017) Complexity in a life cycle perspective. In: 24th CIRP conference on life cycle engineering, vol 61, pp 104–109. https://doi.org/10.1016/j.procir.2016.11.253

  15. Sorgo A (2010) Connecting biology and mathematics: first prepare the teachers CBE. Life Sci Educ 9:196–200

    Article  Google Scholar 

  16. Mandelbrot BB (1997) La geometría fractal de la naturaleza, Metatemas. Tusquets

    Google Scholar 

  17. De Spinadel VW (2010) From the golden mean to chaos, 3rd ed

    Google Scholar 

  18. Perera JG. PJH. DSVW (2007) Geometría fractal

    Google Scholar 

  19. Boon JP, Decroly O (1995) Dynamical systems theory for music analysis. Chaos 5:501–508

    Article  Google Scholar 

  20. Johann Sebastian Bach y la musica fractal: un canto matemático al orden del universo. https://culturainquieta.com/es/arte/musica/item/12344-johann-sebastian-bach-y-la-musica-fractal-un-canto-matematico-al-orden-del-universo.html. Accessed 2 Jul 2020

  21. Warnecke HJ (1992) Die Fraktale Fabrik. Revolution der Unternehmenskultur. Springer, Berlin, Heidelberg

    Google Scholar 

  22. Billett S (2001) Learning in the workplace Strategies for effective practice. Allen & Unwin, Australia

    Google Scholar 

  23. Clark BR (1998) Creating entrepreneurial universities: organizational pathways of transformation. Oxford

    Google Scholar 

  24. Delgado JM, Gutiérrez J (1998) Métodos y técnicas cualitativas de investigación en ciencias sociales, 2nd ed. Madrid

    Google Scholar 

  25. Varela FJ, Maturana HR, Uribe R (1974) Autopoiesis: the organization of living systems, its characterization and a model. Biosyst 5:187–196

    Article  Google Scholar 

  26. Delors J (1996) Engeström Y (2009) The future of activity theory. Learn Expand Act Theory 303–328https://doi.org/10.1017/CBO9780511809989.020

  27. Delors J (1996) La educación encierra un tesoro. Informe a la UNESCO de la Comisión Internacional sobre la educación para el siglo XXI. Madrid

    Google Scholar 

  28. Knight PT (2005) El profesorado de educación superior. Formación para la excelencia. Narcea, Madrid

    Google Scholar 

  29. Trstenjak M, Cosic P (2017) Process planning in Industry 4.0 environment. Procedia Manuf 11. https://doi.org/10.1016/j.promfg.2017.07.303

  30. Prinz C, Morlock F, Freith S, Kreggenfeld N, Kreimeier D, Kuhlenkötter B (2016) Learning factory modules for smart factories in industrie 4.0. In: Procedia CIRP

    Google Scholar 

  31. Aguayo F, Lama JR (1998) Didáctica de la tecnología: fundamentos del diseño y desarrollo del currículum tecnológico. Tebar Flores, Madrid

    Google Scholar 

  32. de Miranda S, Aguayo-González F, Ávila-Gutiérrez MJ, Córdoba-Roldán A (2021) Neuro-competence approach for sustainable engineering. Sustainability 13https://doi.org/10.3390/su13084389

  33. Downes S (2017) Toward personal learning: reclaiming a role for humanity in a world of commercialism and automation. Version 9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suárez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suárez, S., Aguayo, F., Ávila, M.J. (2022). Dual Educational Engineering Towards the Goals of the 2030 Agenda for Sustainable Development. In: Auer, M.E., Pester, A., May, D. (eds) Learning with Technologies and Technologies in Learning. Lecture Notes in Networks and Systems, vol 456. Springer, Cham. https://doi.org/10.1007/978-3-031-04286-7_3

Download citation

Publish with us

Policies and ethics