Abstract
Main characteristics used to compare different light sources are introduced. An overview is presented of the modern light sources based on the motion of ultra-relativistic charges in the field of permanent magnets: synchrotrons, undulators, and free-electron lasers. Brilliance of radiation formed in these light sources is compared. Schemes for short-wavelength light sources operating in the gamma-ray domain are described including those based on (i) the Compton scattering from free electron as well as from the electron bound to ion moving with ultra-relativistic velocity (the Gamma factory proposal to CERN) and (ii) two-stage laser-wakefield accelerators driven by a single multi-petawatt laser pulse.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In literature, one can find another term for this type of radiation—magnetic bremsstrahlung. This term is more frequently used in application to the astrophysical problems; see Ref. [6].
References
SchmĂĽser, P., Dohlus, M., Rossbach, J.: Ultraviolet and Soft X-Ray Free-Electron Lasers. Springer, Berlin (2008)
Rullhusen, P., Artru, X., Dhez, P.: Novel Radiation Sources Using Relativistic Electrons. World Scientific, Singapore (1998)
Altarelli, M., Salam, A.: The quest for brilliance: light sources from the third to the fourth generation. Europhysicsnews 35, 47–50 (2004)
Kim, K.-J.: Characteristics of synchrotron radiation. In: X-ray Data Booklet, pp. 2.1–2.16. Lawrence Berkeley Laboratory, Berkley (2009). http://xdb.lbl.gov/xdb-new.pdf
Kim, K.-J.: Brightness, coherence and propagation characteristics of synchrotron radiation. Nucl. Instrum. Meth. A 246, 71–76 (1986)
Ginzburg, V.L.: Theoretical Physics and Astrophysics (International seies in natural philosophy, vol. 99). Pergamon Press, Oxford (1979)
Schott, G.A.: Electromagnetic Radiation. Cambridge University Press, Cambridge (1912)
Ivanenko, D.D., Pomeranchuk, I.Ya.: On the maximum energy achievable in a betatron. Doklady Acad. Nauk 44, 343 (1944). (in Russian)
Schwinger, J.: On the classical radiation of accelerated electrons. Phys. Rev. 75, 1912 (1949)
Elder, F.R., Gurewitsch, A.M., Langmuir, R.V., Pollock, H.C.: Radiation from electrons in a synchrotron. Phys. Rev. 71, 829 (1947)
Yabashi, M., Tanaka, H.: The next ten years of X-ray science. Nat. Photonics 11, 12 (2017)
Tavares, P.F., Leemann, S.C., Sjöström, M., Andersson, Å: The MAX IV storage ring project. J. Synchrotron Rad. 21, 862 (2014)
Couprie, M.E.: New generation of light sources: present and future. J. Electr. Spectrosc. Rel. Phenomena 196, 3 (2014)
Madey, J.M.J.: Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 1906–1913 (1971)
Deacon, D.A.G., Elias, L.R., Madey, J.M.J., Ramian, G.J., Schwettman, H.A., Smith, T.I.: First operation of a free-electron laser. Phys. Rev. Lett. 38, 892 (1977)
Kondratenko, A.M., E. Saldin, E.L.: Generating of coherent radiation by a relativistic electron beam in an ondulator. Part. Accel. 10, 207 (1980)
Kim, K.J.: Three-dimensional analysis of coherent amplification and self-amplified spontaneous emission in free-electron lasers. Phys. Rev. Lett. 57, 1871 (1986)
Bonifacio, R., Pellegrini, C., Narducci, L.M.: Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50, 373–378 (1984)
Bonifacio, R., Casagrande, F., Cerchioni, G., de Salvo Souza, L., Pierini, P., Piovella, N.: Physics of the high-gain FEL and superradiance. Rivista del Nuovo Cimento 13, 1–69 (1990)
Luchini, P., Motz, H.: Undulators and Free-Electron Lasers. Oxford University Press, New York (1990)
Saldin, E.L., Schneidmiller, E.A., Yurkov, M.V.: The Physics of Free-Electron Lasers. Springer, Berlin (1999)
Huang, Zh., Kim, K-J.: Review of X-ray free-electron laser theory. Phys. Rev. ST Accel. Beams 10, 034801 (2007)
Pellegrini, C., Marinelli, A., Reiche, S.: The physics of x-ray free-electron lasers. Rev. Mod. Phys. 88, 015006 (2016)
Bostedt, Ch., Boutet, S., Fritz, D.M., Huang, Z., Lee, H.J., Lemke, H.T., Robert, A., Schlotter, W.F., Turner, J.J., Williams, G.J.: Linac coherent light source: the first five years. Rev. Mod. Phys. 88, 015007 (2016)
Seddon, E.A., Clarke, J.A., Dunning, D.J., Masciovecchio, C., Milne, C.J., Parmigiani, F., Rugg, D., Spence, J.C.H., Thompson, N.R., Ueda, K., Vinko, S.M., Wark, J.S., Wurth, E.: Short-wavelength free-electron laser sources and science: a review. Rep. Prog. Phys. 80, 115901 (2017)
Gover, A., Friedman, A., Emma, C., Sudar, N., Musumeci, P., Pellegrini, C.: Superradiant and stimulated-superradiant emission of bunched electorn beams. Rev. Mod. Phys. 91, 035003 (2019)
Emma, P., Akre, R., Arthur, J., Bionta, R., Bostedt, C., et al.: First lasing and operation of an Ă…ngstrom-wavelength free-electron laser. Nat. Photonics 4, 641 (2010)
McNeil, B.W.J., Thompson, N.R.: X-ray free-electron lasers. Nat. Photonics 4, 814 (2010)
Milne, Ch.J., Schietinger, Th., Aiba, M., Alarcon, A., Alex, J., et al.: SwissFEL: the Swiss X-ray free electron laser. Appl. Sci. 7, 720 (2017)
Doerr, A.: The new XFELs. Nature Meth. 13, 33 (2018)
Di Mitri, S., Allaria, E.M., Cinquegrana, P., Craievich, P., Danailov, M., Demidovich, A., De Ninno, G., Diviacco, B., Fawley, W., Froehlich, L., Giannessi, L., Ivanov, R., Musardo, M., Nikolov, I., Penco, G., Sigalotti, P., Spampinati, S., Spezzani, C., Trovò, M., Veronese, M.: FERMI@Elettra, a seeded free electron laser source for a broad scientific user program. Proc. SPIE 8078, 807802 (2011)
LCLS Design Study Group (Arthur, J., et al.): Linac coherent light source (LCLS) design study report. SLAC-R-0521. see http://www.slac.stanford.edu/pubs/slacreports/slac-r-521.html (1998)
Materlik, G., Tschentscher, Th. (eds.): TESLA technical design report. Part V. The X-ray free electron laser (2001). http://tesla.desy.de/new_pages/TDR_CD/PartV/fel.html
Federici, L., Giordano, G., Matone, G., Pasquariello, G., Picozza, P., et al.: The LADON photon beam with the ESRF 5 GeV machine. Lett. Nuovo Cimento 27, 339 (1980)
Federici, L., Giordano, G., Matone, G., Pasquariello, G., Picozza, P.G., Caloi, R., Casano, L., de Pascale, M.P., Mattioli, M., Poldi, E.: Backward Compton scattering of laser light against high-energy electrons: the LADON photon beam at Frascati. Nuovo Cimento 59B, 247 (1980)
ur Rehman, H., Lee, J., Kim, Y.: Optimization of the laser-Compton scattering spectrum for the transmutation of high-toxicity and long-living nuclear waste. Ann. Nucl. Energy 105, 150 (2017)
Krämer, J.M., Jochmann, A., Budde, M., Bussmann, M., Couperus, J.P., et al.: Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications. Sci. Reports 8, 139 (2018)
ur Rehman, H., Lee, J., Kim, Y.: Comparison of the laser-Compton scattering and the conventional Bremsstrahlung X-rays for photonuclear transmutation. Int. J. Energy Res. 42, 236–244 (2018)
Berestetskii, V.B., Lifshitz, E.M. and Pitaevskii, L.P.: Course of Theoretical Physics. Quantum Electrodynamics, vol. 4. Pergamon Press, Oxford (1982)
Kulikov, O.F., Telnov, Y.Y., Filippov, E.I., Yakimenko, M.N.: Compton effect on moving electrons. Phys. Lett. 13, 344 (1964)
Bemporad, C., Milburn, R.H., Tanaka, N., Fotino, M.: High-energy photons from compton scattering of light on 6.0-GeV electrons. Phys. Rev. 138, B1546 (1965)
Ballam, J., Chadwick, G.B., Gearhart, R., Guiragossian, Z.G.T., Klein, P.R., Levy, A., Menke, M., Murray, J.J., Seyboth, P., Wolf, G., Sinclair, C.K., Bingham, H.H., Fretter, W.B., Moffeit, K.C., Podolsky, W.J., Rabin, M.S., Rosenfeld, A.H., Windmolders, R.: Total and partial photoproduction cross sections at 1.44, 2.8, and 4.7 GeV. Phys. Rev. Lett. 23, 498 (1969) (Erratum: Phys. Rev. Lett. 23, 817 (1969))
D’Angelo, A., Bartalini, O., Bellini, V., Levi Sandri, P., Moricciani, D., Nicoletti, L., Zucchiatti, A.: Generation of compton backscattering \(\gamma \)-ray beams. Nucl. Instrum. Meth. A 455, 1 (2000)
Schaerf, C.: Polarized gamma-ray beams. Phys. Today 58, 44 (2005)
Weller, H.R., Ahmed, M.W., Gao, H., Tornow, W., Wu, Y.K., Gai, M., Miskimen, R.: Research opportunities at the upgraded HIgS facility. Prog. Part. Nucl. Phys. 62, 257 (2009)
Krafft, G.A., Priebe, G.: Compton sources of electromagnetic radiation. Rev. Accel. Sci. Technol. 3, 147 (2010)
Sei, N., Ogawa, H., Jia, Q.: Multiple-collision free-electron laser compton backscattering for a high-yield gamma-ray source. Appl. Sci. 10, 1418 (2020)
Howell, C.R., Ahmed, M.W., Afanasev, A., Alesini, D., Annand, J.R.M. et al.: International workshop on next generation gamma-ray source (2020). arXiv:2012.10843
Wu, Y.K., Vinokurov, N.A., Mikhailov, S., Li, J., Popov, V.: High-gain lasing and polarization switch with a distributed Optical-Klystron free-electron laser. Phys. Rev. Lett. 96, 224801 (2006)
Xenon beams light path to gamma factory. CERN Courier (13 October 2017). https://cerncourier.com/xenon-beams-light-path-to-gamma-factory/
Krasny, M. W.: The gamma factory proposal for CERN (2015). arXiv:1511.07794
Krasny, M.W.: The gamma factory proposal for CERN. Photon-2017 Conference, May 22-29, 2017 8CERN, Geneva
Schaumann, M., Alemany-Fernández, R., Bartosik, H., Bohl, Th., Bruce, R. et al: First partially stripped ions in the LHC (\(^{208}\)Pb\(^{81+}\)). In: Proceedings, 10th International Particle Accelerator Conference (IPAC2019), p. MOPRB055 (Melbourne, Australia, May 19–24, 2019
Krasny, M.W., Martens, A., Dutheil, Y.: Gamma factory proof-of-principle experiment: Letter of intent. CERN-SPSC-2019-031/SPSC-I-253, 25/09/2019. http://cds.cern.ch/record/2690736/files/SPSC-I-253.pdf
Tajima, T., Dawson, J.: Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979)
Pukhov, A., Meyer-ter-Vehn, J.: Laser wake field acceleration (LWFA). Appl. Phys. B 74, 355 (2002)
Esarey, E., Schroeder, C.B., Leemans, W.P.: Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229 (2009)
Zhu, X.-L., Chen, M., Weng, S.-M., Yu, T.-P., Wang, W.-M., He, F., Sheng, Z.-M., McKenna, P., Jaroszynski, D.A., Zhang, J.: Extremely brilliant GeV \(\gamma \)-rays from a two-stage laser-plasma accelerator. Sci. Adv. 6, eaaz7240 (2020)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Korol, A., Solov’yov, A.V. (2022). Light Sources at High Photon Energies. In: Novel Lights Sources Beyond Free Electron Lasers. Particle Acceleration and Detection. Springer, Cham. https://doi.org/10.1007/978-3-031-04282-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-04282-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-04281-2
Online ISBN: 978-3-031-04282-9
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)