Skip to main content

Light Sources at High Photon Energies

  • Chapter
  • First Online:
Novel Lights Sources Beyond Free Electron Lasers

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

  • 347 Accesses

Abstract

Main characteristics used to compare different light sources are introduced. An overview is presented of the modern light sources based on the motion of ultra-relativistic charges in the field of permanent magnets: synchrotrons, undulators, and free-electron lasers. Brilliance of radiation formed in these light sources is compared. Schemes for short-wavelength light sources operating in the gamma-ray domain are described including those based on (i) the Compton scattering from free electron as well as from the electron bound to ion moving with ultra-relativistic velocity (the Gamma factory proposal to CERN) and (ii) two-stage laser-wakefield accelerators driven by a single multi-petawatt laser pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In literature, one can find another term for this type of radiation—magnetic bremsstrahlung. This term is more frequently used in application to the astrophysical problems; see Ref. [6].

References

  1. SchmĂĽser, P., Dohlus, M., Rossbach, J.: Ultraviolet and Soft X-Ray Free-Electron Lasers. Springer, Berlin (2008)

    Google Scholar 

  2. Rullhusen, P., Artru, X., Dhez, P.: Novel Radiation Sources Using Relativistic Electrons. World Scientific, Singapore (1998)

    Book  Google Scholar 

  3. Altarelli, M., Salam, A.: The quest for brilliance: light sources from the third to the fourth generation. Europhysicsnews 35, 47–50 (2004)

    ADS  Google Scholar 

  4. Kim, K.-J.: Characteristics of synchrotron radiation. In: X-ray Data Booklet, pp. 2.1–2.16. Lawrence Berkeley Laboratory, Berkley (2009). http://xdb.lbl.gov/xdb-new.pdf

  5. Kim, K.-J.: Brightness, coherence and propagation characteristics of synchrotron radiation. Nucl. Instrum. Meth. A 246, 71–76 (1986)

    Article  ADS  Google Scholar 

  6. Ginzburg, V.L.: Theoretical Physics and Astrophysics (International seies in natural philosophy, vol. 99). Pergamon Press, Oxford (1979)

    Google Scholar 

  7. Schott, G.A.: Electromagnetic Radiation. Cambridge University Press, Cambridge (1912)

    MATH  Google Scholar 

  8. Ivanenko, D.D., Pomeranchuk, I.Ya.: On the maximum energy achievable in a betatron. Doklady Acad. Nauk 44, 343 (1944). (in Russian)

    Google Scholar 

  9. Schwinger, J.: On the classical radiation of accelerated electrons. Phys. Rev. 75, 1912 (1949)

    Google Scholar 

  10. Elder, F.R., Gurewitsch, A.M., Langmuir, R.V., Pollock, H.C.: Radiation from electrons in a synchrotron. Phys. Rev. 71, 829 (1947)

    Article  ADS  Google Scholar 

  11. Yabashi, M., Tanaka, H.: The next ten years of X-ray science. Nat. Photonics 11, 12 (2017)

    Article  ADS  Google Scholar 

  12. Tavares, P.F., Leemann, S.C., Sjöström, M., Andersson, Å: The MAX IV storage ring project. J. Synchrotron Rad. 21, 862 (2014)

    Google Scholar 

  13. Couprie, M.E.: New generation of light sources: present and future. J. Electr. Spectrosc. Rel. Phenomena 196, 3 (2014)

    Google Scholar 

  14. Madey, J.M.J.: Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 1906–1913 (1971)

    Article  ADS  Google Scholar 

  15. Deacon, D.A.G., Elias, L.R., Madey, J.M.J., Ramian, G.J., Schwettman, H.A., Smith, T.I.: First operation of a free-electron laser. Phys. Rev. Lett. 38, 892 (1977)

    Article  ADS  Google Scholar 

  16. Kondratenko, A.M., E. Saldin, E.L.: Generating of coherent radiation by a relativistic electron beam in an ondulator. Part. Accel. 10, 207 (1980)

    Google Scholar 

  17. Kim, K.J.: Three-dimensional analysis of coherent amplification and self-amplified spontaneous emission in free-electron lasers. Phys. Rev. Lett. 57, 1871 (1986)

    Google Scholar 

  18. Bonifacio, R., Pellegrini, C., Narducci, L.M.: Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50, 373–378 (1984)

    Article  ADS  Google Scholar 

  19. Bonifacio, R., Casagrande, F., Cerchioni, G., de Salvo Souza, L., Pierini, P., Piovella, N.: Physics of the high-gain FEL and superradiance. Rivista del Nuovo Cimento 13, 1–69 (1990)

    Article  ADS  Google Scholar 

  20. Luchini, P., Motz, H.: Undulators and Free-Electron Lasers. Oxford University Press, New York (1990)

    Google Scholar 

  21. Saldin, E.L., Schneidmiller, E.A., Yurkov, M.V.: The Physics of Free-Electron Lasers. Springer, Berlin (1999)

    Google Scholar 

  22. Huang, Zh., Kim, K-J.: Review of X-ray free-electron laser theory. Phys. Rev. ST Accel. Beams 10, 034801 (2007)

    Google Scholar 

  23. Pellegrini, C., Marinelli, A., Reiche, S.: The physics of x-ray free-electron lasers. Rev. Mod. Phys. 88, 015006 (2016)

    Google Scholar 

  24. Bostedt, Ch., Boutet, S., Fritz, D.M., Huang, Z., Lee, H.J., Lemke, H.T., Robert, A., Schlotter, W.F., Turner, J.J., Williams, G.J.: Linac coherent light source: the first five years. Rev. Mod. Phys. 88, 015007 (2016)

    Google Scholar 

  25. Seddon, E.A., Clarke, J.A., Dunning, D.J., Masciovecchio, C., Milne, C.J., Parmigiani, F., Rugg, D., Spence, J.C.H., Thompson, N.R., Ueda, K., Vinko, S.M., Wark, J.S., Wurth, E.: Short-wavelength free-electron laser sources and science: a review. Rep. Prog. Phys. 80, 115901 (2017)

    Google Scholar 

  26. Gover, A., Friedman, A., Emma, C., Sudar, N., Musumeci, P., Pellegrini, C.: Superradiant and stimulated-superradiant emission of bunched electorn beams. Rev. Mod. Phys. 91, 035003 (2019)

    Google Scholar 

  27. Emma, P., Akre, R., Arthur, J., Bionta, R., Bostedt, C., et al.: First lasing and operation of an Ă…ngstrom-wavelength free-electron laser. Nat. Photonics 4, 641 (2010)

    Google Scholar 

  28. McNeil, B.W.J., Thompson, N.R.: X-ray free-electron lasers. Nat. Photonics 4, 814 (2010)

    Google Scholar 

  29. Milne, Ch.J., Schietinger, Th., Aiba, M., Alarcon, A., Alex, J., et al.: SwissFEL: the Swiss X-ray free electron laser. Appl. Sci. 7, 720 (2017)

    Google Scholar 

  30. Doerr, A.: The new XFELs. Nature Meth. 13, 33 (2018)

    Google Scholar 

  31. Di Mitri, S., Allaria, E.M., Cinquegrana, P., Craievich, P., Danailov, M., Demidovich, A., De Ninno, G., Diviacco, B., Fawley, W., Froehlich, L., Giannessi, L., Ivanov, R., Musardo, M., Nikolov, I., Penco, G., Sigalotti, P., Spampinati, S., Spezzani, C., Trovò, M., Veronese, M.: FERMI@Elettra, a seeded free electron laser source for a broad scientific user program. Proc. SPIE 8078, 807802 (2011)

    Google Scholar 

  32. http://flash.desy.de/

  33. LCLS Design Study Group (Arthur, J., et al.): Linac coherent light source (LCLS) design study report. SLAC-R-0521. see http://www.slac.stanford.edu/pubs/slacreports/slac-r-521.html (1998)

  34. Materlik, G., Tschentscher, Th. (eds.): TESLA technical design report. Part V. The X-ray free electron laser (2001). http://tesla.desy.de/new_pages/TDR_CD/PartV/fel.html

  35. Federici, L., Giordano, G., Matone, G., Pasquariello, G., Picozza, P., et al.: The LADON photon beam with the ESRF 5 GeV machine. Lett. Nuovo Cimento 27, 339 (1980)

    Google Scholar 

  36. Federici, L., Giordano, G., Matone, G., Pasquariello, G., Picozza, P.G., Caloi, R., Casano, L., de Pascale, M.P., Mattioli, M., Poldi, E.: Backward Compton scattering of laser light against high-energy electrons: the LADON photon beam at Frascati. Nuovo Cimento 59B, 247 (1980)

    Google Scholar 

  37. ur Rehman, H., Lee, J., Kim, Y.: Optimization of the laser-Compton scattering spectrum for the transmutation of high-toxicity and long-living nuclear waste. Ann. Nucl. Energy 105, 150 (2017)

    Google Scholar 

  38. Krämer, J.M., Jochmann, A., Budde, M., Bussmann, M., Couperus, J.P., et al.: Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications. Sci. Reports 8, 139 (2018)

    Google Scholar 

  39. ur Rehman, H., Lee, J., Kim, Y.: Comparison of the laser-Compton scattering and the conventional Bremsstrahlung X-rays for photonuclear transmutation. Int. J. Energy Res. 42, 236–244 (2018)

    Google Scholar 

  40. Berestetskii, V.B., Lifshitz, E.M. and Pitaevskii, L.P.: Course of Theoretical Physics. Quantum Electrodynamics, vol. 4. Pergamon Press, Oxford (1982)

    Google Scholar 

  41. Kulikov, O.F., Telnov, Y.Y., Filippov, E.I., Yakimenko, M.N.: Compton effect on moving electrons. Phys. Lett. 13, 344 (1964)

    Google Scholar 

  42. Bemporad, C., Milburn, R.H., Tanaka, N., Fotino, M.: High-energy photons from compton scattering of light on 6.0-GeV electrons. Phys. Rev. 138, B1546 (1965)

    Google Scholar 

  43. Ballam, J., Chadwick, G.B., Gearhart, R., Guiragossian, Z.G.T., Klein, P.R., Levy, A., Menke, M., Murray, J.J., Seyboth, P., Wolf, G., Sinclair, C.K., Bingham, H.H., Fretter, W.B., Moffeit, K.C., Podolsky, W.J., Rabin, M.S., Rosenfeld, A.H., Windmolders, R.: Total and partial photoproduction cross sections at 1.44, 2.8, and 4.7 GeV. Phys. Rev. Lett. 23, 498 (1969) (Erratum: Phys. Rev. Lett. 23, 817 (1969))

    Google Scholar 

  44. D’Angelo, A., Bartalini, O., Bellini, V., Levi Sandri, P., Moricciani, D., Nicoletti, L., Zucchiatti, A.: Generation of compton backscattering \(\gamma \)-ray beams. Nucl. Instrum. Meth. A 455, 1 (2000)

    Google Scholar 

  45. Schaerf, C.: Polarized gamma-ray beams. Phys. Today 58, 44 (2005)

    Google Scholar 

  46. Weller, H.R., Ahmed, M.W., Gao, H., Tornow, W., Wu, Y.K., Gai, M., Miskimen, R.: Research opportunities at the upgraded HIgS facility. Prog. Part. Nucl. Phys. 62, 257 (2009)

    Google Scholar 

  47. Krafft, G.A., Priebe, G.: Compton sources of electromagnetic radiation. Rev. Accel. Sci. Technol. 3, 147 (2010)

    Google Scholar 

  48. Sei, N., Ogawa, H., Jia, Q.: Multiple-collision free-electron laser compton backscattering for a high-yield gamma-ray source. Appl. Sci. 10, 1418 (2020)

    Google Scholar 

  49. Howell, C.R., Ahmed, M.W., Afanasev, A., Alesini, D., Annand, J.R.M. et al.: International workshop on next generation gamma-ray source (2020). arXiv:2012.10843

  50. Wu, Y.K., Vinokurov, N.A., Mikhailov, S., Li, J., Popov, V.: High-gain lasing and polarization switch with a distributed Optical-Klystron free-electron laser. Phys. Rev. Lett. 96, 224801 (2006)

    Google Scholar 

  51. Xenon beams light path to gamma factory. CERN Courier (13 October 2017). https://cerncourier.com/xenon-beams-light-path-to-gamma-factory/

  52. Krasny, M. W.: The gamma factory proposal for CERN (2015). arXiv:1511.07794

  53. Krasny, M.W.: The gamma factory proposal for CERN. Photon-2017 Conference, May 22-29, 2017 8CERN, Geneva

    Google Scholar 

  54. Schaumann, M., Alemany-Fernández, R., Bartosik, H., Bohl, Th., Bruce, R. et al: First partially stripped ions in the LHC (\(^{208}\)Pb\(^{81+}\)). In: Proceedings, 10th International Particle Accelerator Conference (IPAC2019), p. MOPRB055 (Melbourne, Australia, May 19–24, 2019

    Google Scholar 

  55. Krasny, M.W., Martens, A., Dutheil, Y.: Gamma factory proof-of-principle experiment: Letter of intent. CERN-SPSC-2019-031/SPSC-I-253, 25/09/2019. http://cds.cern.ch/record/2690736/files/SPSC-I-253.pdf

  56. Tajima, T., Dawson, J.: Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979)

    Google Scholar 

  57. Pukhov, A., Meyer-ter-Vehn, J.: Laser wake field acceleration (LWFA). Appl. Phys. B 74, 355 (2002)

    Google Scholar 

  58. Esarey, E., Schroeder, C.B., Leemans, W.P.: Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229 (2009)

    Google Scholar 

  59. Zhu, X.-L., Chen, M., Weng, S.-M., Yu, T.-P., Wang, W.-M., He, F., Sheng, Z.-M., McKenna, P., Jaroszynski, D.A., Zhang, J.: Extremely brilliant GeV \(\gamma \)-rays from a two-stage laser-plasma accelerator. Sci. Adv. 6, eaaz7240 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Korol .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korol, A., Solov’yov, A.V. (2022). Light Sources at High Photon Energies. In: Novel Lights Sources Beyond Free Electron Lasers. Particle Acceleration and Detection. Springer, Cham. https://doi.org/10.1007/978-3-031-04282-9_3

Download citation

Publish with us

Policies and ethics