Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 445))

Abstract

A common problem in geostatistics is variogram estimation, in order to choose an acceptable model for kriging. Nevertheless, there is no standard method, first, to test if a particular model can be accepted as valid and, second, to choose among several competing variogram models. The problem is even more complex if, in addition, there are outliers in the data. In this paper we propose to use the distribution of some classical and robust variogram estimators to test, first, the validity of a particular model, accepting it if the p-value of the test, with this particular model as null hypothesis, is large enough and, second, to compare several competing models, choosing the model with the largest p-value among several acceptable models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Csáki, F. (eds.) 2nd International Symposium on Information Theory, pp. 267–281. Akadémiai Kiadó, Budapest (1973)

    Google Scholar 

  2. Cabrero-Ortega, M.Y., García-Pérez, A.: Análisis estadístico de datos espaciales con QGIS y R. Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain (2020)

    Google Scholar 

  3. García-Pérez, A.: Saddlepoint approximations for the distribution of some robust estimators of the variogram. Metrika 83(1), 69–91 (2020)

    Article  MathSciNet  Google Scholar 

  4. García-Pérez, A.: New robust cross-variogram estimators and approximations of their distributions based on saddlepoint techniques (2020). Submitted

    Google Scholar 

  5. García-Pérez, A.: Robust spatio-temporal variogram estimators and a saddlepoint approximation for their distributions (2020). Submitted

    Google Scholar 

  6. Gorsich, D.J., Genton, M.G.: Variogram model selection via nonparametric derivative estimation. Math. Geol. 32(3), 249–270 (2000)

    Article  Google Scholar 

  7. Marko, K., Al-Amri, N.S., Elfeki, A.M.M.: Geostatistical analysis using GIS for mapping groundwater quality: case study in the recharge area of Wadi Usfan, western Saudi Arabia. Arab. J. Geosci. 7, 5239–5252 (2014)

    Article  Google Scholar 

  8. Matheron, G.: Traité de géostatistique appliquée, Tome I: Mémoires du Bureau de Recherches Géologiques et Minières, no. 14, Editions Technip, Paris (1962)

    Google Scholar 

  9. Matheron, G.: Les variables régionalisées et leur estimation. Masson, Paris (1965)

    Google Scholar 

  10. Muñoz-Pardo, J.F.: Approche géostatistique de la variabilité spatiale des milieux géophysique. MA Thesis, Université de Grenoble et lÍnstitut National Polytechnique de Grenoble (1987)

    Google Scholar 

  11. Webster, R., McBratney, A.B.: On the Akaike Information Criterion for choosing models for variograms of soil properties. Eur. J. Soil. Sci. 40, 493–496 (1989)

    Article  Google Scholar 

  12. Webster, R., Oliver, M.A.: Sample adequately to estimate variograms of soil properties. Eur. J. Soil. Sci. 43, 177–192 (1992)

    Article  Google Scholar 

  13. Webster, R., Oliver, M.A.: Geostatistics for Environmental Scientists, 2nd edn. Wiley, Chichester (2007)

    Book  Google Scholar 

Download references

Acknowledgements

This work is partially supported by Grant PGC2018-095194-B-I00 from Ministerio de Ciencia, Innovación y Universidades (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso García-Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Pérez, A. (2023). Variogram Model Selection. In: Balakrishnan, N., Gil, M.Á., Martín, N., Morales, D., Pardo, M.d.C. (eds) Trends in Mathematical, Information and Data Sciences. Studies in Systems, Decision and Control, vol 445. Springer, Cham. https://doi.org/10.1007/978-3-031-04137-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04137-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04136-5

  • Online ISBN: 978-3-031-04137-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics