Abstract
A common problem in geostatistics is variogram estimation, in order to choose an acceptable model for kriging. Nevertheless, there is no standard method, first, to test if a particular model can be accepted as valid and, second, to choose among several competing variogram models. The problem is even more complex if, in addition, there are outliers in the data. In this paper we propose to use the distribution of some classical and robust variogram estimators to test, first, the validity of a particular model, accepting it if the p-value of the test, with this particular model as null hypothesis, is large enough and, second, to compare several competing models, choosing the model with the largest p-value among several acceptable models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Csáki, F. (eds.) 2nd International Symposium on Information Theory, pp. 267–281. Akadémiai Kiadó, Budapest (1973)
Cabrero-Ortega, M.Y., García-Pérez, A.: Análisis estadístico de datos espaciales con QGIS y R. Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain (2020)
García-Pérez, A.: Saddlepoint approximations for the distribution of some robust estimators of the variogram. Metrika 83(1), 69–91 (2020)
García-Pérez, A.: New robust cross-variogram estimators and approximations of their distributions based on saddlepoint techniques (2020). Submitted
García-Pérez, A.: Robust spatio-temporal variogram estimators and a saddlepoint approximation for their distributions (2020). Submitted
Gorsich, D.J., Genton, M.G.: Variogram model selection via nonparametric derivative estimation. Math. Geol. 32(3), 249–270 (2000)
Marko, K., Al-Amri, N.S., Elfeki, A.M.M.: Geostatistical analysis using GIS for mapping groundwater quality: case study in the recharge area of Wadi Usfan, western Saudi Arabia. Arab. J. Geosci. 7, 5239–5252 (2014)
Matheron, G.: Traité de géostatistique appliquée, Tome I: Mémoires du Bureau de Recherches Géologiques et Minières, no. 14, Editions Technip, Paris (1962)
Matheron, G.: Les variables régionalisées et leur estimation. Masson, Paris (1965)
Muñoz-Pardo, J.F.: Approche géostatistique de la variabilité spatiale des milieux géophysique. MA Thesis, Université de Grenoble et lÍnstitut National Polytechnique de Grenoble (1987)
Webster, R., McBratney, A.B.: On the Akaike Information Criterion for choosing models for variograms of soil properties. Eur. J. Soil. Sci. 40, 493–496 (1989)
Webster, R., Oliver, M.A.: Sample adequately to estimate variograms of soil properties. Eur. J. Soil. Sci. 43, 177–192 (1992)
Webster, R., Oliver, M.A.: Geostatistics for Environmental Scientists, 2nd edn. Wiley, Chichester (2007)
Acknowledgements
This work is partially supported by Grant PGC2018-095194-B-I00 from Ministerio de Ciencia, Innovación y Universidades (Spain).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
García-Pérez, A. (2023). Variogram Model Selection. In: Balakrishnan, N., Gil, M.Á., Martín, N., Morales, D., Pardo, M.d.C. (eds) Trends in Mathematical, Information and Data Sciences. Studies in Systems, Decision and Control, vol 445. Springer, Cham. https://doi.org/10.1007/978-3-031-04137-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-04137-2_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-04136-5
Online ISBN: 978-3-031-04137-2
eBook Packages: EngineeringEngineering (R0)