Abstract
A sizable amount of goodness-of-fit tests involving functional data have appeared in the last decade. We provide a relatively compact revision of most of these contributions, within the independent and identically distributed framework, by reviewing goodness-of-fit tests for distribution and regression models with functional predictor and either scalar or functional response.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bickel, P.J., Rosenblatt, M.: On some global measures of the deviations of density function estimates. Ann. Stat. 1(6), 1071–1095 (1973)
Bugni, F.A., Hall, P., Horowitz, J.L., Neumann, G.R.: Goodness-of-fit tests for functional data. Economet. J. 12(S1), S1–S18 (2009)
Chen, F., Jiang, Q., Feng, Z., Zhu, L.: Model checks for functional linear regression models based on projected empirical processes. Comput. Stat. Data Anal. 144, 106897 (2020)
Cuesta-Albertos, J.A., del Barrio, E., Fraiman, R., Matrán, C.: The random projection method in goodness of fit for functional data. Comput. Stat. Data Anal. 51(10), 4814–4831 (2007)
Cuesta-Albertos, J.A., Fraiman, R., Ransford, T.: Random projections and goodness-of-fit tests in infinite-dimensional spaces. Bull. Brazil Math. Soc. 37(4), 477–501 (2006)
Cuesta-Albertos, J.A., García-Portugués, E., Febrero-Bande, M., González-Manteiga, W.: Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes. Ann. Stat. 47(1), 439–467 (2019)
Delsol, L., Ferraty, F., Vieu, P.: Structural test in regression on functional variables. J. Multivar. Anal. 102(3), 422–447 (2011)
Ditzhaus, M., Gaigall, D.: A consistent goodness-of-fit test for huge dimensional and functional data. J. Nonpar. Stat. 30(4), 834–859 (2018)
Durbin, J.: Weak convergence of the sample distribution function when parameters are estimated. Ann. Stat. 1(2), 279–290 (1973)
Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis: Theory and Practice. Springer Series in Statistics, Springer, New York (2006)
García-Portugués, E., Álvarez-Liébana, J., Álvarez-Pérez, G., González-Manteiga, W.: A goodness-of-fit test for the functional linear model with functional response. Scand. J. Stat. 48(2), 502–528 (2021)
García-Portugués, E., Álvarez-Liébana, J., Álvarez-Pérez, G., González-Manteiga, W.: Goodness-of-fit tests for functional linear models based on integrated projections. In: Aneiros, G., Horová, I., Hušková, M., Vieu, P. (eds.) Functional and High-Dimensional Statistics and Related Fields, Contributions to Statistics, pp. 107–114. Springer, Cham (2020)
García-Portugués, E., González-Manteiga, W., Febrero-Bande, M.: A goodness-of-fit test for the functional linear model with scalar response. J. Comput. Graph Stat. 23(3), 761–778 (2014)
González-Manteiga, W., Crujeiras, R.M.: An updated review of goodness-of-fit tests for regression models. TEST 22(3), 361–411 (2013)
Górecki, T., Horváth, L., Kokoszka, P.: Tests of normality of functional data. Int. Stat. Rev. 88(3), 677–697 (2020)
Härdle, W., Mammen, E.: Comparing nonparametric versus parametric regression fits. Ann. Stat. 21(4), 1926–1947 (1993)
Horváth, L., Kokoszka, P.: Inference for Functional Data with Applications. Springer Series in Statistics, Springer, New York (2012)
Horváth, L., Reeder, R.: A test of significance in functional quadratic regression. Bernoulli 19(5A), 2130–2151 (2013)
Jiang, Q., Hušková, M., Meintanis, S.G., Zhu, L.: Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data. J. Multivar. Anal. 170, 202–220 (2019)
Kellner, J., Celisse, A.: A one-sample test for normality with kernel methods. Bernoulli 25(3), 1816–1837 (2019)
Kolkiewicz, A., Rice, G., Xie, Y.: Projection pursuit based tests of normality with functional data. J. Stat. Plan Infer. 211, 326–339 (2021)
Lai, T., Zhang, Z., Wang, Y.: Testing independence and goodness-of-fit jointly for functional linear models. J. Korean Stat. Soc. 50, 380–402 (2021)
Lee, C.E., Zhang, X., Shao, X.: Testing conditional mean independence for functional data. Biometrika 107(2), 331–346 (2020)
Lyons, R.: Distance covariance in metric spaces. Ann. Probab. 41(5), 3284–3305 (2013)
Maistre, S., Patilea, V.: Testing for the significance of functional covariates. J. Multivar. Anal. 179 (2020)
McLean, M.W., Hooker, G., Ruppert, D.: Restricted likelihood ratio tests for linearity in scalar-on-function regression. Stat. Comput. 25(5), 997–1008 (2015)
Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)
Patilea, V., Sánchez-Sellero, C.: Testing for lack-of-fit in functional regression models against general alternatives. J. Stat. Plan Infer. 209, 229–251 (2020)
Patilea, V., Sánchez-Sellero, C., Saumard, M.: Testing the predictor effect on a functional response. J. Am. Stat. Assoc. 111(516), 1684–1695 (2016)
Qiu, Z., Chen, J., Zhang, J.T.: Two-sample tests for multivariate functional data with applications. Comput. Stat. Data Anal. 157 (2021)
Ramsay, J.O., Silverman, B.W.: Functional Data Analysis. Springer Series in Statistics. Springer, New York (2005)
Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27(3), 832–837 (1956)
Sejdinovic, D., Sriperumbudur, B., Gretton, A., Fukumizu, K.: Equivalence of distance-based and RKHS-based statistics in hypothesis testing. Ann. Stat. 41(5), 2263–2291 (2013)
Stute, W.: Nonparametric model checks for regression. Ann. Stat. 25(2), 613–641 (1997)
Székely, G.J., Rizzo, M.L.: The energy of data. Ann. Rev. Stat. Appl. 4(1), 447–479 (2017)
Székely, G.J., Rizzo, M.L., Bakirov, N.K.: Measuring and testing dependence by correlation of distances. Ann. Stat. 35(6), 2769–2794 (2007)
Wand, M.P., Jones, M.C.: Kernel Smoothing. Chapman & Hall, London (1995)
Yasemin-Tekbudak, M., Alfaro-Córdoba, M., Maity, A., Staicu, A.M.: A comparison of testing methods in scalar-on-function regression. AStA. Adv. Stat. Anal. 103(3), 411–436 (2019)
Acknowledgements
The authors acknowledge the support of project MTM2016-76969-P, PGC2018-097284-B-100, and IJCI-2017-32005 from the Spain’s Ministry of Economy and Competitiveness. All three grants were partially co-funded by the European Regional Development Fund (ERDF). The support by Competitive Reference Groups 2017–2020 (ED431C 2017/38) from the Xunta de Galicia through the ERDF is also acknowledged.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
González-Manteiga, W., Crujeiras, R.M., García-Portugués, E. (2023). A Review of Goodness-of-Fit Tests for Models Involving Functional Data. In: Balakrishnan, N., Gil, M.Á., Martín, N., Morales, D., Pardo, M.d.C. (eds) Trends in Mathematical, Information and Data Sciences. Studies in Systems, Decision and Control, vol 445. Springer, Cham. https://doi.org/10.1007/978-3-031-04137-2_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-04137-2_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-04136-5
Online ISBN: 978-3-031-04137-2
eBook Packages: EngineeringEngineering (R0)