Skip to main content

A Review of Goodness-of-Fit Tests for Models Involving Functional Data

  • Chapter
  • First Online:
Trends in Mathematical, Information and Data Sciences

Abstract

A sizable amount of goodness-of-fit tests involving functional data have appeared in the last decade. We provide a relatively compact revision of most of these contributions, within the independent and identically distributed framework, by reviewing goodness-of-fit tests for distribution and regression models with functional predictor and either scalar or functional response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bickel, P.J., Rosenblatt, M.: On some global measures of the deviations of density function estimates. Ann. Stat. 1(6), 1071–1095 (1973)

    Google Scholar 

  2. Bugni, F.A., Hall, P., Horowitz, J.L., Neumann, G.R.: Goodness-of-fit tests for functional data. Economet. J. 12(S1), S1–S18 (2009)

    Google Scholar 

  3. Chen, F., Jiang, Q., Feng, Z., Zhu, L.: Model checks for functional linear regression models based on projected empirical processes. Comput. Stat. Data Anal. 144, 106897 (2020)

    Google Scholar 

  4. Cuesta-Albertos, J.A., del Barrio, E., Fraiman, R., Matrán, C.: The random projection method in goodness of fit for functional data. Comput. Stat. Data Anal. 51(10), 4814–4831 (2007)

    Google Scholar 

  5. Cuesta-Albertos, J.A., Fraiman, R., Ransford, T.: Random projections and goodness-of-fit tests in infinite-dimensional spaces. Bull. Brazil Math. Soc. 37(4), 477–501 (2006)

    Google Scholar 

  6. Cuesta-Albertos, J.A., García-Portugués, E., Febrero-Bande, M., González-Manteiga, W.: Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes. Ann. Stat. 47(1), 439–467 (2019)

    Google Scholar 

  7. Delsol, L., Ferraty, F., Vieu, P.: Structural test in regression on functional variables. J. Multivar. Anal. 102(3), 422–447 (2011)

    Google Scholar 

  8. Ditzhaus, M., Gaigall, D.: A consistent goodness-of-fit test for huge dimensional and functional data. J. Nonpar. Stat. 30(4), 834–859 (2018)

    Google Scholar 

  9. Durbin, J.: Weak convergence of the sample distribution function when parameters are estimated. Ann. Stat. 1(2), 279–290 (1973)

    Google Scholar 

  10. Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis: Theory and Practice. Springer Series in Statistics, Springer, New York (2006)

    Google Scholar 

  11. García-Portugués, E., Álvarez-Liébana, J., Álvarez-Pérez, G., González-Manteiga, W.: A goodness-of-fit test for the functional linear model with functional response. Scand. J. Stat. 48(2), 502–528 (2021)

    Google Scholar 

  12. García-Portugués, E., Álvarez-Liébana, J., Álvarez-Pérez, G., González-Manteiga, W.: Goodness-of-fit tests for functional linear models based on integrated projections. In: Aneiros, G., Horová, I., Hušková, M., Vieu, P. (eds.) Functional and High-Dimensional Statistics and Related Fields, Contributions to Statistics, pp. 107–114. Springer, Cham (2020)

    Google Scholar 

  13. García-Portugués, E., González-Manteiga, W., Febrero-Bande, M.: A goodness-of-fit test for the functional linear model with scalar response. J. Comput. Graph Stat. 23(3), 761–778 (2014)

    Google Scholar 

  14. González-Manteiga, W., Crujeiras, R.M.: An updated review of goodness-of-fit tests for regression models. TEST 22(3), 361–411 (2013)

    Article  MathSciNet  Google Scholar 

  15. Górecki, T., Horváth, L., Kokoszka, P.: Tests of normality of functional data. Int. Stat. Rev. 88(3), 677–697 (2020)

    Google Scholar 

  16. Härdle, W., Mammen, E.: Comparing nonparametric versus parametric regression fits. Ann. Stat. 21(4), 1926–1947 (1993)

    Google Scholar 

  17. Horváth, L., Kokoszka, P.: Inference for Functional Data with Applications. Springer Series in Statistics, Springer, New York (2012)

    Google Scholar 

  18. Horváth, L., Reeder, R.: A test of significance in functional quadratic regression. Bernoulli 19(5A), 2130–2151 (2013)

    Article  MathSciNet  Google Scholar 

  19. Jiang, Q., Hušková, M., Meintanis, S.G., Zhu, L.: Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data. J. Multivar. Anal. 170, 202–220 (2019)

    Article  MathSciNet  Google Scholar 

  20. Kellner, J., Celisse, A.: A one-sample test for normality with kernel methods. Bernoulli 25(3), 1816–1837 (2019)

    Article  MathSciNet  Google Scholar 

  21. Kolkiewicz, A., Rice, G., Xie, Y.: Projection pursuit based tests of normality with functional data. J. Stat. Plan Infer. 211, 326–339 (2021)

    Google Scholar 

  22. Lai, T., Zhang, Z., Wang, Y.: Testing independence and goodness-of-fit jointly for functional linear models. J. Korean Stat. Soc. 50, 380–402 (2021)

    Google Scholar 

  23. Lee, C.E., Zhang, X., Shao, X.: Testing conditional mean independence for functional data. Biometrika 107(2), 331–346 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Lyons, R.: Distance covariance in metric spaces. Ann. Probab. 41(5), 3284–3305 (2013)

    Article  MathSciNet  Google Scholar 

  25. Maistre, S., Patilea, V.: Testing for the significance of functional covariates. J. Multivar. Anal. 179 (2020)

    Google Scholar 

  26. McLean, M.W., Hooker, G., Ruppert, D.: Restricted likelihood ratio tests for linearity in scalar-on-function regression. Stat. Comput. 25(5), 997–1008 (2015)

    Google Scholar 

  27. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)

    Google Scholar 

  28. Patilea, V., Sánchez-Sellero, C.: Testing for lack-of-fit in functional regression models against general alternatives. J. Stat. Plan Infer. 209, 229–251 (2020)

    Google Scholar 

  29. Patilea, V., Sánchez-Sellero, C., Saumard, M.: Testing the predictor effect on a functional response. J. Am. Stat. Assoc. 111(516), 1684–1695 (2016)

    Google Scholar 

  30. Qiu, Z., Chen, J., Zhang, J.T.: Two-sample tests for multivariate functional data with applications. Comput. Stat. Data Anal. 157 (2021)

    Google Scholar 

  31. Ramsay, J.O., Silverman, B.W.: Functional Data Analysis. Springer Series in Statistics. Springer, New York (2005)

    Google Scholar 

  32. Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27(3), 832–837 (1956)

    Google Scholar 

  33. Sejdinovic, D., Sriperumbudur, B., Gretton, A., Fukumizu, K.: Equivalence of distance-based and RKHS-based statistics in hypothesis testing. Ann. Stat. 41(5), 2263–2291 (2013)

    Google Scholar 

  34. Stute, W.: Nonparametric model checks for regression. Ann. Stat. 25(2), 613–641 (1997)

    Google Scholar 

  35. Székely, G.J., Rizzo, M.L.: The energy of data. Ann. Rev. Stat. Appl. 4(1), 447–479 (2017)

    Google Scholar 

  36. Székely, G.J., Rizzo, M.L., Bakirov, N.K.: Measuring and testing dependence by correlation of distances. Ann. Stat. 35(6), 2769–2794 (2007)

    Google Scholar 

  37. Wand, M.P., Jones, M.C.: Kernel Smoothing. Chapman & Hall, London (1995)

    Book  Google Scholar 

  38. Yasemin-Tekbudak, M., Alfaro-Córdoba, M., Maity, A., Staicu, A.M.: A comparison of testing methods in scalar-on-function regression. AStA. Adv. Stat. Anal. 103(3), 411–436 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of project MTM2016-76969-P, PGC2018-097284-B-100, and IJCI-2017-32005 from the Spain’s Ministry of Economy and Competitiveness. All three grants were partially co-funded by the European Regional Development Fund (ERDF). The support by Competitive Reference Groups 2017–2020 (ED431C 2017/38) from the Xunta de Galicia through the ERDF is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenceslao González-Manteiga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González-Manteiga, W., Crujeiras, R.M., García-Portugués, E. (2023). A Review of Goodness-of-Fit Tests for Models Involving Functional Data. In: Balakrishnan, N., Gil, M.Á., Martín, N., Morales, D., Pardo, M.d.C. (eds) Trends in Mathematical, Information and Data Sciences. Studies in Systems, Decision and Control, vol 445. Springer, Cham. https://doi.org/10.1007/978-3-031-04137-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04137-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04136-5

  • Online ISBN: 978-3-031-04137-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics