Skip to main content

Uncertainty Effects on Bike Spoke Wheel Modal Behaviour

  • Conference paper
  • First Online:
Model Validation and Uncertainty Quantification, Volume 3

Abstract

In bicycles, one of the components which mostly influences the global system dynamics is the wheel-tyre subsystem. In this paper, the modal behaviour of a bike spoke wheel is numerically and experimentally investigated focusing on the characterisation of the spoke pretension effect, role of boundary conditions and parameter uncertainties.

A linearised parametric finite element model (FEM) is developed with the open-source code LUPOS in MatlabĀ® environment. A detailed description of the model which includes several components, i.e. rim, hub, spokes and hub gears, is given. The FEM model is based on a reduced set of key nodes belonging to the wheel cross section profile, material and geometrical characteristic assignment and automated meshing procedure, allowing reduced computational effort and high model accuracy.

Experimental modal analysis is conducted on the wheel, and critical issues in the pole identification are highlighted, due to the high modal density given by the spokes and uncertainties. A further numerical investigation based on a variational approach is applied to investigate the role of system uncertainties on the modal parameters. The analysis shows that the identification issues are mainly related to spoke pretension, cross contact and boundary conditions. Moreover, the spoke pretension uncertainty induces a mistuning in the structure and the corresponding loss of axial symmetry. The fine model updating of the preliminary model is then achieved optimising geometrical and material properties of the components as well spoke pretension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kindt, P., Sas, P., Desmet, W.: Development and validation of a three-dimensional ring-based structural Tyre model. J. Sound Vib. 326(3ā€“5), 852ā€“869 (2009)

    ArticleĀ  Google ScholarĀ 

  2. Brinkmeier, M., Nackenhorst, U., Petersen, S., Estorff, O.: A finite element approach for the simulation of Tyre rolling noise. J. Sound Vib. 309, 20ā€“39 (2008)

    ArticleĀ  Google ScholarĀ 

  3. Vella, A.D., Tota, A., Vigliani, A.: On the Road Profile Estimation from Vehicle Dynamics Measurements, SAE Paper 2021-01-1115 (2021)

    Google ScholarĀ 

  4. Diaz, C.G., Kindt, P., Middelberg, J., Vercammen, S., Thiry, C., Close, R., Leyssens, J.: Dynamic behaviour of a rolling Tyre: experimental and numerical analyses. J. Sound Vib. 364, 147ā€“164 (2016)

    ArticleĀ  Google ScholarĀ 

  5. Diaz, G.., Vercammen, S., Middelberg, J., Kindt, P., Thiry, C., Leyssens, J..: Numerical prediction of the dynamic behaviour of rolling tyres. In: Proceedings of ISMA (2012)

    Google ScholarĀ 

  6. Doria, A., Taraborrelli, L., Urbani, M.: A modal approach for the study of the transient behavior of motorcycle and scooter Tyres. In: Proceedings of ASME, Buffalo, New York, USA, pp. 29ā€“37. (2014)

    Google ScholarĀ 

  7. Dorfi, H.R., Wheeler, R.L., Keum, B.B.: Vibration modes of radial tyres: application to non-rolling and rolling events, SAE Paper 2005-01-2526 (2005)

    Google ScholarĀ 

  8. Pinnington, R.J., Briscoe, A.R.: A wave model for a pneumatic Tyre belt. J. Sound Vib. 253, 941ā€“959 (2002)

    ArticleĀ  Google ScholarĀ 

  9. Kindt, P., Berckmans, D., De Coninck, F., Desmet, W.: Experimental analysis of the structure-borne Tyre/road noise due to road discontinuities. Mech. Syst. Signal Process. 23, 2557ā€“2574 (2009)

    ArticleĀ  Google ScholarĀ 

  10. Vella, A.D., Vigliani, A., Tota, A., Lisitano, D.: Experimental Ride Comfort Analysis of an Electric Light Vehicle in Urban Scenario, SAE Paper 2020-01-1086 (2020)

    Google ScholarĀ 

  11. Bonisoli, E., Marcuccio, G., Venturini, S.: Interference fit estimation through stress-stiffening effect on dynamics. Mech. Syst. Signal Process. 160, 107919 (2021)

    ArticleĀ  Google ScholarĀ 

  12. Mottershead, J.E., Mares, C., Friswell, M.I., James, S.: Selection and updating of parameters for an aluminium space-frame model. Mech. Syst. Signal Process. 14(6), 923ā€“944 (2000)

    ArticleĀ  Google ScholarĀ 

  13. Kyprianou, A., Mottershead, J.E.: Uncertain systems: Modelling and updating. In: Proceedings of the 18th ICSV, pp. 995ā€“1002 (2011)

    Google ScholarĀ 

  14. Greening, P.D., Lieven, N.A.J.: Identification and updating of loading in frameworks using dynamic measurements. J. Sound Vib. 260(1), 101ā€“115 (2003)

    ArticleĀ  Google ScholarĀ 

  15. Flores, J.E.R., Viana, F.A.C., Rade, D.A., Steffen Jr., V.: Identification of external forces in mechanical systems by using LifeCycle model and stress-stiffening effect. Mech. Syst. Signal Process. 21(7), 2900ā€“2917 (2007)

    ArticleĀ  Google ScholarĀ 

  16. Bahra, A.S., Greening, P.D.: Identifying axial load patterns using space frame FEMs and measured vibration data. Mech. Syst. Signal Process. 23(4), 1282ā€“1297 (2009)

    ArticleĀ  Google ScholarĀ 

  17. Bahra, A.S., Greening, P.D.: Identifying multiple axial load patterns using measured vibration data. J. Sound Vib. 330(15), 3591ā€“3605 (2011)

    ArticleĀ  Google ScholarĀ 

  18. Allemang, R.J.: A correlation coefficient for modal vector analysis. In: Proceedings of the 1st International Modal Analysis Conference, pp. 110ā€“116. (1982)

    Google ScholarĀ 

  19. Allemang, R.J.: The modal assurance criterionā€“twenty years of use and abuse. Sound Vib. 37(8), 14ā€“23 (2003)

    Google ScholarĀ 

  20. Kranjc, T., Slavič, J., Boltežar, M.: An interface force measurements-based substructure identification and an analysis of the uncertainty propagation. Mech. Syst. Signal Process. 56, 2ā€“14 (2015)

    ArticleĀ  Google ScholarĀ 

  21. Durand, J.F., Soize, C., Gagliardini, L.: Structural-acoustic modeling of automotive vehicles in presence of uncertainties and experimental identification and validation. J. Acoust. Soc. Am. 124(3), 1513ā€“1525 (2008)

    ArticleĀ  Google ScholarĀ 

  22. Hinke, L., Dohnal, F., Mace, B.R., Waters, T.P., Ferguson, N.S.: Component mode synthesis as a framework for uncertainty analysis. J. Sound Vib. 324(1ā€“2), 161ā€“178 (2009)

    ArticleĀ  Google ScholarĀ 

  23. Scigliano, R., Scionti, M., Lardeur, P.: Verification, validation and variability for the vibration study of a car windscreen modeled by finite elements. Finite Elem. Anal. Des. 47(1), 17ā€“29 (2011)

    ArticleĀ  Google ScholarĀ 

  24. Gallina, A., Lisowski, W., Pichler, L., Stachowski, A., Uhl, T.: Analysis of natural frequency variability of a brake component. Mech. Syst. Signal Process. 32, 188ā€“199 (2012)

    ArticleĀ  Google ScholarĀ 

  25. Bonisoli E.: LUPOS ā€“ LUmped Parameters Open Source FEM code, Tutorial v.2021-09-16

    Google ScholarĀ 

  26. Bonisoli, E., Marcuccio, G., Rosso, C.: Crossing and veering phenomena in crank mechanism dynamics. In: Topics in Model Validation and Uncertainty Quantification, vol. 5, pp. 175ā€“187. Springer, New York (2013)

    ChapterĀ  Google ScholarĀ 

  27. Bonisoli, E., Brino, M., Delprete, C.: Numerical-experimental comparison of a parametric test-rig for crossing and veering phenomena. Mech. Syst. Signal Process. 128, 369ā€“388 (2019)

    ArticleĀ  Google ScholarĀ 

  28. Bonisoli, E., Lisitano, D., Dimauro, L., Peroni, L.: A proposal of dynamic behaviour design based on mode shape tracing: numerical application to a motorbike frame. In: Dynamic Substructures, vol. 4, pp. 149ā€“158. Springer, Cham (2020)

    Google ScholarĀ 

  29. https://it.mathworks.com/help/optim/ug/fmincon.html. Available in 2021-10-18

  30. https://www.ryde.nl/x-plorer-r. Available in 2021-06-03

  31. https://www.purecycles.com/blogs/bicycle-news/156387911-speaking-of-spokes-spoke-patterns. Available in 2021-06-03

  32. Bonisoli, E., Delprete, C., Rosso, C.: Proposal of a modal-geometrical-based master nodes selection criterion in modal analysis. Mech. Syst. Signal Process. 23(3), 606ā€“620 (2009)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Bonisoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonisoli, E., Vella, A.D., Venturini, S. (2023). Uncertainty Effects on Bike Spoke Wheel Modal Behaviour. In: Mao, Z. (eds) Model Validation and Uncertainty Quantification, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-031-04090-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04090-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04089-4

  • Online ISBN: 978-3-031-04090-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics