Skip to main content

Supervised Learning for Abrupt Change Detection in a Driven Eccentric Wheel

  • Conference paper
  • First Online:
Nonlinear Structures & Systems, Volume 1

Abstract

Event detection is often a predominant challenge in processing non-stationary signals. In engineering mechanics, events may result from non-smoothness in the form of loss of contact, impact, or the onset of sliding-friction. An interesting example of such a mechanical system is a wheel whose center of mass does not coincide with its geometric center. An eccentric wheel may evolve in three distinct phases: roll without slip, roll with slip, and hop. Therefore, this paper seeks to explore and compare supervised learning methods for phase identification (i.e., roll, slip, and hop) in simulated data from a driven eccentric wheel. The mechanics of a torque driven wheel on a flat surface are derived through an augmented Lagrangian formulation and Coulomb friction is adopted to model transverse contact forces. To accommodate for non-smoothness, the system is broken down in complementary sub-problems and the simulation is conducted using event-based methods. The simulated data is then used to train a Naive Bayes classifier, a Support Vector Machine (SVM), and an Extreme Gradient Boosting (XGBoost) classifier. Lastly, the methods as well as their performance, merits, and drawbacks are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore, S., Culver, D., Mann, B.P.: The eccentric disk and its eccentric behaviour. Eur. J. Phys. 42(6), 065012 (2021)

    Article  Google Scholar 

  2. Lindén, J., Källman, K.-M., Lindberg, M.: The rolling elliptical cylinder. Amer. J. Phys. 89(4), 358–364 (2021)

    Article  Google Scholar 

  3. Khasawneh, F. A., Mann, B. P., Insperger, T., and Stépán, G. (August 24, 2009). Increased stability of low-speed turning through a distributed force and continuous delay model. ASME. J. Comput. Nonlinear Dynam. 4(4), 041003–1 (October 2009).

    Google Scholar 

  4. Patel, B.R., Mann, B.P., Young, K.A.: Uncharted islands of chatter instability in milling. Int. J. Mach. Tools Manuf. 48(1), 124–134 (2008)

    Article  Google Scholar 

  5. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change point detection. Knowl. Inf. Syst. 51(2), 339–367 (2017)

    Article  Google Scholar 

  6. Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using mobile phones to determine transportation modes. ACM Trans. Sensor Netw. 6(2), 1–27 (2010)

    Article  Google Scholar 

  7. Zheng, Y., Liu, L., Wang, L., Xie, X.: Learning transportation mode from raw GPS data for geographic applications on the web. In: Proceedings of the 17th International Conference on World Wide Web, pp. 247–256 (2008)

    Google Scholar 

  8. Aminikhanghahi, S., Cook, D.J.: Using change point detection to automate daily activity segmentation. In: 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 262–267. IEEE, Piscataway (2017)

    Google Scholar 

  9. Staudacher, M., Telser, S., Amann, A., Hinterhuber, H., Ritsch-Marte, M.: A new method for change-point detection developed for on-line analysis of the heart beat variability during sleep. Phys. A Statist. Mech. Appl. 349(3–4), 582–596 (2005)

    Article  Google Scholar 

  10. Rybach, D., Gollan, C., Schluter, R., Ney, H.: Audio segmentation for speech recognition using segment features. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4197–4200. IEEE, Piscataway (2009)

    Google Scholar 

  11. Cross, R.: Pendulum motion of a biased cylindrical tube. Eur. J. Phys. 41(1), 015006 (2019)

    Article  Google Scholar 

  12. Yanzhu, L., Yun, X.: Qualitative analysis of a rolling hoop with mass unbalance. Acta Mech. Sinica 20(6), 672–675 (2004)

    Article  Google Scholar 

  13. Maritz, M.F., Theron, W.F.D.: Experimental verification of the motion of a loaded hoop. Amer. J. Phys. 80(7), 594–598 (2012)

    Article  Google Scholar 

  14. Theron, W.F.D.: The rolling motion of an eccentrically loaded wheel. Amer. J. Phys. 68(9), 812–820 (2000)

    Article  Google Scholar 

  15. Cross, R.: Dynamics of a rolling egg. Eur. J. Phys. 42(5), 055015 (2021)

    Article  Google Scholar 

  16. Heppler, G.R., D’Eleuterio, G.M.T.: Rock and roll of an ellipse. Amer. J. Phys. 89(7), 666–676 (2021)

    Article  Google Scholar 

  17. MATLAB. Version 9.8.0.1417392 (R2020a). The MathWorks Inc., Natick, Massachusetts (2020)

    Google Scholar 

  18. Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pp. 785–794 New York, NY. ACM, New York (2016)

    Google Scholar 

  19. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Rish, I. et al.: An empirical study of the Naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, pp. 41–46 (2001)

    Google Scholar 

  21. Friedman, J., Hastie, T., Tibshirani, R., et al.: The Elements of Statistical Learning, vol. 1. Springer Series in Statistics. Springer, New York (2001)

    Google Scholar 

  22. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

Download references

Acknowledgements

Partial support from ARO awards W911NF2120117 and W911NF12R001204 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel A. Moore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moore, S.A., Culver, D., Mann, B.P. (2023). Supervised Learning for Abrupt Change Detection in a Driven Eccentric Wheel. In: Brake, M.R., Renson, L., Kuether, R.J., Tiso, P. (eds) Nonlinear Structures & Systems, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-031-04086-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04086-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04085-6

  • Online ISBN: 978-3-031-04086-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics