Skip to main content

Thinking 2050: Bioengineering of Science and Art

  • Chapter
  • First Online:
Thinking

Summary

The authors of THINKING: Bioengineering of Science and Art were asked how they would see the future of their field 30 years later. This chapter presents the authors’ views on the kind of world, thought force, cosmic dimension of thinking, engineering and systems thinking education, art and design, information theory, philosophy and social sciences education, curricula, musicology, humanities, economic thinking, engineering liveliness, environment and ecosystem, a new paradigm of thinking, and interdisciplinary science and thinking in 2050, along with fears and hopes for the 2050’ human being who is thinking.

THINKING: Bioengineering of Science and Art–Word cloud

It’s not the problem that causes our suffering; it’s our thinking about the problem”.

Byron Katie

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sfard A (2001) There is more to discourse than meets the ears: Looking at thinking as communicating to learn more about mathematical learning. Educ Stud Math 46(1):13–57

    Article  Google Scholar 

  2. Graesser AC (2011) Learning, thinking, and emoting with discourse technologies. Am Psychol 66(8):746

    Article  Google Scholar 

  3. Mercer N (2007) Sociocultural discourse analysis: Analysing classroom talk as a social mode of thinking. J Appl Linguist Profess Pract 1(2):137–168

    Google Scholar 

  4. Sanchez-Ruiz M-J, Santos MR, Jiménez JJ (2013) The role of metaphorical thinking in the creativity of scientific discourse. Creat Res J 25(4):361–368

    Article  Google Scholar 

  5. Russ RS, Scherr RE, Hammer D, Mikeska J (2008) Recognizing mechanistic reasoning in student scientific inquiry: a framework for discourse analysis developed from philosophy of science. Sci Educ 92(3):499–525

    Article  Google Scholar 

  6. Cobb P, Wood T (1993) Discourse, mathematical thinking, and contexts for learning: sociocultural dynamics in children’s development 91

    Google Scholar 

  7. Hulme M (2008) The conquering of climate: discourses of fear and their dissolution. Geogr J 174(1):5–16. https://doi.org/10.1111/j.1475-4959.2008.00266.x

    Article  Google Scholar 

  8. Trewin B, Cazenave A, Howell S, Huss M, Isensee K, Palmer MD et al (2021) Headline indicators for global climate monitoring. Bull Am Meteor Soc 102(1):E20–E37

    Article  Google Scholar 

  9. Eckstein D, Künzel V, Schäfer L (2021) Global climate risk index 2021. Who suffers most from extreme weather events 2000–2019

    Google Scholar 

  10. Witt MA (2019) De-globalization: theories, predictions, and opportunities for international business research. J Int Bus Stud 50(7):1053–1077

    Article  Google Scholar 

  11. Lasswell HD (2021) The future of world communication and propaganda 14

    Google Scholar 

  12. Lasswell HD, Lerner D, Speier H (eds) Propaganda and communication in world history, vol III: a pluralizing world in information. University of Hawaii Press, pp 516–534. https://doi.org/10.1515/9780824886219-015

  13. Saroya M, Best G, Hollinger GA (2020) Online exploration of tunnel networks leveraging topological CNN-based world predictions. In: 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS), 24 Oct–24 Jan 2021, pp 6038–6045. https://doi.org/10.1109/IROS45743.2020.9341170

  14. Ukuhor HO (2021) The interrelationships between antimicrobial resistance, COVID-19, past, and future pandemics. J Infect Public Health 14(1):53–60. https://doi.org/10.1016/j.jiph.2020.10.018

    Article  PubMed  Google Scholar 

  15. Murdoch WW, Chu F-I, Stewart-Oaten A, Wilber MQ (2018) Improving wellbeing and reducing future world population. PLoS ONE 13(9):e0202851. https://doi.org/10.1371/journal.pone.0202851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Traxler J (2018) Distance learning—predictions and possibilities. Educ Sci 8(1):35

    Article  Google Scholar 

  17. Kayabaş BK (2021) Social impacts of cyber culture and predictions about the future of open and distance education. In: Present and future paradigms of cyberculture in the 21st century. IGI Global, pp 135–153

    Google Scholar 

  18. Cui H, Nguyen T, Chou F-C, Lin T-H, Schneider J, Bradley D et al (2020) Deep kinematic models for kinematically feasible vehicle trajectory predictions. In: 2020. IEEE, pp 10563–10569

    Google Scholar 

  19. Zhongming Z, Linong L, Wangqiang Z, Wei L (2019) Energy in the Climate Future: Predictions from the International Energy Agency.

    Google Scholar 

  20. Smith G, Archer R, Nandwani D, Li J (2018) Impacts of urbanization: diversity and the symbiotic relationships of rural, urban, and spaces in-between. Int J Sust Dev World 25(3):276–289

    Article  Google Scholar 

  21. Wilkinson KP (2019) The future of the community in rural areas. In: The future of rural America. Routledge, pp 73–89

    Google Scholar 

  22. Woods M (2019) The future of rural places. In: The Routledge companion to rural planning. Routledge, pp 622–632

    Google Scholar 

  23. Pearlman RA (1988) Inaccurate predictions of life expectancy: dilemmas and opportunities. Arch Intern Med 148(12):2538–2538. https://doi.org/10.1001/archinte.1988.00380120007001

    Article  Google Scholar 

  24. Quelhas AC, Rasga C, Johnson-Laird PN (2017) A priori true and false conditionals. Cogn Sci 41:1003–1030

    Article  Google Scholar 

  25. Engel SJ, Gilmartin BJ, Bongort K, Hess A (2000) Prognostics, the real issues involved with predicting life remaining. In: 2000 IEEE, pp 457–469

    Google Scholar 

  26. Pal D (2013) Existence of thought force and its characteristics. Am J Phys Chem 2(5):94–104

    Article  Google Scholar 

  27. Pal D, De AU (2012) The cosmic microwave background radiation temperature signifying the existence of the thought-carrying particle, thought retaining particle and thought force. NeuroQuantology 10(3)

    Google Scholar 

  28. Horton Z (2017) Composing a cosmic view: three alternatives for thinking scale in the anthropocene. In: Scale in literature and culture. Springer, pp 35–60

    Google Scholar 

  29. Shuman LJ, Atman CJ, Eschenbach EA, Evans D, Felder RM, Imbrie PK et al (2002) The future of engineering education. In: 2002 IEEE, pp T4A-T4A

    Google Scholar 

  30. Rosen MA (2009) Engineering education: future trends and advances. In: 2009 pp 44–52

    Google Scholar 

  31. El Maraghy WH (2011) Future trends in engineering education and research. In: Advances in sustainable manufacturing. Springer, pp 11–16

    Google Scholar 

  32. Qamar SZ, Pervez T, Al-Kindi M (2019) Engineering education: challenges, opportunities, and future trends, pp 26–28

    Google Scholar 

  33. Fordyce D (1988) The development of systems thinking in engineering education: an interdisciplinary model. Eur J Eng Educ 13(3):283–292

    Article  Google Scholar 

  34. Nyemba WR, Carter KF, Mbohwa C, Chinguwa S (2019) A systems thinking approach to collaborations for capacity building and sustainability in engineering education. Procedia Manuf 33:732–739. https://doi.org/10.1016/j.promfg.2019.04.092

    Article  Google Scholar 

  35. Nehdi M, Rehan R (2007) Raising the bar for civil engineering education: systems thinking approach. J Prof Issues Eng Educ Pract 133(2):116–125

    Article  Google Scholar 

  36. Cromer AH (1997) Connected knowledge: science, philosophy, and education

    Google Scholar 

  37. Blake N, Smeyers P, Smith RD, Standish P (2008) The Blackwell guide to the philosophy of education, vol 6. Wiley

    Google Scholar 

  38. Tesar M, Hytten K, Hoskins TK, Rosiek J, Jackson AY, Hand M et al (2021) Philosophy of education in a new key: future of philosophy of education. Educ Philos Theory 1–22

    Google Scholar 

  39. Ji-yuan YE (2010) Approaching evaluation system in humanities and social sciences. J Nanjing Univ (Philos Human Soc Sci) 1:97–111

    Google Scholar 

  40. Bleakley A, Marshall R, Brömer R (2006) Toward an aesthetic medicine: developing a core medical humanities undergraduate curriculum. J Med Human 27(4):197–213

    Article  Google Scholar 

  41. Khalid A, Chin CA, Atiqullah MM, Sweigart JF, Stutzmann B, Zhou W Building a better engineer: the importance of humanities in engineering curriculum, pp 23–256

    Google Scholar 

  42. Wachtler C, Lundin S, Troein M (2006) Humanities for medical students? A qualitative study of a medical humanities curriculum in a medical school program. BMC Med Educ 6(1):16. https://doi.org/10.1186/1472-6920-6-16

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tchudi S (1993) The astonishing curriculum: integrating science and humanities through language. ERIC

    Google Scholar 

  44. Rives-East D, Lima OK (2013) Designing interdisciplinary science/humanities courses: Challenges and solutions. Coll Teach 61(3):100–106

    Article  Google Scholar 

  45. Elsbach KD, Stigliani I (2018) Design thinking and organizational culture: a review and framework for future research. J Manag 44(6):2274–2306

    Google Scholar 

  46. Ewin N, Luck J, Chugh R, Jarvis J (2017) Rethinking project management education: a humanistic approach based on design thinking. Procedia Comput Sci 121:503–510

    Article  Google Scholar 

  47. Clark K, Smith R (2008) Unleashing the power of design thinking. Design Manag Rev 19(3):8–15

    Article  Google Scholar 

  48. Liedtka J (2015) Perspective: linking design thinking with innovation outcomes through cognitive bias reduction. J Prod Innov Manag 32(6):925–938

    Article  Google Scholar 

  49. Gloppen J (2009) Perspectives on design leadership and design thinking and how they relate to European service industries. Design Manag J 4(1):33–47

    Article  Google Scholar 

  50. Brenner W, Uebernickel F, Abrell T (2016) Design thinking as mindset, process, and toolbox. In: Design thinking for innovation. Springer, pp 3–21

    Google Scholar 

  51. Davis A, Adler A, Alvarado C, Hammond T, Hitchcock R, Oltmans M et al (2002) Art and the future. Citeseer

    Google Scholar 

  52. Cagan J, Dinar M, Shah JJ, Leifer L, Linsey J, Smith S et al (2013) Empirical studies of design thinking: past, present, future. American Society of Mechanical Engineers, p V005T006A020

    Google Scholar 

  53. Grammenos D, Antona M (2018) Future designers: introducing creativity, design thinking & design to children. Int J Child-comput Interact 16:16–24

    Article  Google Scholar 

  54. Okada T, Ishibashi K (2017) Imitation, inspiration, and creation: Cognitive process of creative drawing by copying others’ artworks. Cogn Sci 41(7):1804–1837

    Article  Google Scholar 

  55. Augello A, Infantino I, Lieto A, Pilato G, Rizzo R, Vella F (2016) Artwork creation by a cognitive architecture integrating computational creativity and dual process approaches. Biol Inspired Cogn Archit 15:74–86. https://doi.org/10.1016/j.bica.2015.09.007

    Article  Google Scholar 

  56. De Pisapia N, Bacci F, Parrott D, Melcher D (2016) Brain networks for visual creativity: a functional connectivity study of planning a visual artwork. Sci Rep 6(1):39185. https://doi.org/10.1038/srep39185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Deplazes A, Huppenbauer M (2009) Synthetic organisms and living machines. Syst Synth Biol 3(1):55. https://doi.org/10.1007/s11693-009-9029-4

    Article  PubMed  PubMed Central  Google Scholar 

  58. Serrano L (2007) Synthetic biology: promises and challenges. Mol Syst Biol 3(1):158. https://doi.org/10.1038/msb4100202

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tran P, Prindle A (2021) Synthetic biology in biofilms: tools, challenges, and opportunities. Biotechnol Prog e3123

    Google Scholar 

  60. Gallup O, Ming H, Ellis T (2021) Ten future challenges for synthetic biology. Eng Biol 5(3):51–59

    Article  Google Scholar 

  61. Costanza R, Mageau M (1999) What is a healthy ecosystem? Aquat Ecol 33(1):105–115

    Article  Google Scholar 

  62. Peltzer DA, Wardle DA, Allison VJ, Baisden WT, Bardgett RD, Chadwick OA et al (2010) Understanding ecosystem retrogression. Ecol Monogr 80(4):509–529

    Article  Google Scholar 

  63. Tsujimoto M, Kajikawa Y, Tomita J, Matsumoto Y (2018) A review of the ecosystem concept—towards coherent ecosystem design. Technol Forecast Soc Chang 136:49–58. https://doi.org/10.1016/j.techfore.2017.06.032

    Article  Google Scholar 

  64. Duffy JE (2003) Biodiversity loss, trophic skew and ecosystem functioning. Ecol Lett 6(8):680–687. https://doi.org/10.1046/j.1461-0248.2003.00494.x

    Article  Google Scholar 

  65. Miller GH, Fogel ML, Magee JW, Gagan MK, Clarke SJ, Johnson BJ (2005) Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309(5732):287–290

    Google Scholar 

  66. Brockerhoff EG, Barbaro L, Castagneyrol B, Forrester DI, Gardiner B, González-Olabarria JR et al (2017) Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers Conserv 26(13):3005–3035. https://doi.org/10.1007/s10531-017-1453-2

    Article  Google Scholar 

  67. Bratman GN, Anderson CB, Berman MG, Cochran B, De Vries S, Flanders J et al (2019) Nature and mental health: an ecosystem service perspective. Sci Adv 5(7):eaax0903

    Google Scholar 

  68. Costanza R, de Groot R, Braat L, Kubiszewski I, Fioramonti L, Sutton P et al (2017) Twenty years of ecosystem services: how far have we come and how far do we still need to go? Ecosyst Serv 28:1–16. https://doi.org/10.1016/j.ecoser.2017.09.008

    Article  Google Scholar 

  69. Berdugo M, Delgado-Baquerizo M, Soliveres S, Hernández-Clemente R, Zhao Y, Gaitán JJ et al (2020) Global ecosystem thresholds driven by aridity. Science 367(6479):787–790

    Article  CAS  Google Scholar 

  70. Rezaei N (2021) Integrated Science, vol 1, 1 edn. Springer, Cham. https://doi.org/10.1007/978-3-030-65273-9

  71. Saghazadeh A, Suz AA, Viu A, Wu C-F, Maboloc CR, Hellberg D et al (2021) Integrated Science 2050: Science Without Borders. In: Rezaei N (ed) Integrated science: science without borders. Springer International Publishing, Cham, pp 461–478. https://doi.org/10.1007/978-3-030-65273-9_22

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Rezaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rezaei, N. et al. (2022). Thinking 2050: Bioengineering of Science and Art. In: Rezaei, N., Saghazadeh, A. (eds) Thinking. Integrated Science, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-031-04075-7_36

Download citation

Publish with us

Policies and ethics