Skip to main content

Modulation Methods for Ultrasound Midair Haptics

  • Chapter
  • First Online:
Ultrasound Mid-Air Haptics for Touchless Interfaces

Part of the book series: Human–Computer Interaction Series ((HCIS))

Abstract

This chapter describes techniques for midair vibrotactile stimulation based on ultrasound foci with temporally varied intensities or positions. This variation of the focal property is called modulations and can be categorized into three fundamental types of methods according to the modulating fashions and obtained vibrotactile effects: amplitude modulation (AM), lateral modulation (LM), and spatiotemporal modulation (STM). Appropriate modulation is useful in designing vibrotactile textures, enhancing the subjective strength of aroused sensation, and transmitting geometrical information about spatial vibrotactile patterns. The aim of this chapter is to provide a brief and simple overview of the main rendering techniques and to discuss their pros and cons, thus providing sufficient engineering insight to the haptics and human–computer interaction (HCI) readers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ablart D, Frier W, Limerick H, Georgiou O, Obrist M (2019) Using ultrasonic mid-air haptic patterns in multi-modal user experiences. In: Proceedings of IEEE international symposium on Haptic, Audio and Visual Environments and Games (HAVE), pp 1–6

    Google Scholar 

  • Barreiro H, Sinclair S, Otaduy MA (2020) Path routing optimization for STM ultrasound rendering. IEEE Trans Haptics 13(1):45–51

    Google Scholar 

  • Beattie D, Frier W, Georgiou O, Long B, Ablart D (2020) Incorporating the perception of visual roughness into the design of mid-air haptic textures. In: ACM Symposium on Applied Perception 2020 (SAP ’20). Association for Computing Machinery, New York, NY, USA, Article 4:1–10

    Google Scholar 

  • Essick GK, Edin BB (1995) Receptor encoding of moving tactile stimuli in humans. II. The mean response of individual low-threshold mechanoreceptors to motion across the receptive field. J Neuroscience 15(1):848–864

    Google Scholar 

  • Frier W et al (2018) Using spatiotemporal modulation to draw tactile patterns in mid-air. In: Ferre M (ed) Haptics: perception, devices and scenarios. Springer, Cham, Switzerland, pp 270–281

    Google Scholar 

  • Frier W, Pittera D, Ablart D, Obrist M, Subramanian S (2019) Sampling strategy for ultrasonic mid-air haptics. In: Proceedings of the 2019 CHI conference on human factors in computing systems. Association for Computing Machinery, New York, NY, USA, Paper 121, pp 1–11

    Google Scholar 

  • Gil H, Son H, Kim JR, Oakley I (2018) Whiskers: exploring the use of ultrasonic haptic cues on the face. In: Proceedings of the 2018 CHI conference on human factors in computing systems. Association for Computing Machinery, New York, NY, USA, Paper 658, 1–13

    Google Scholar 

  • Hajas D, Pittera D, Nasce A, Georgiou O, Obrist M (2020) Mid-air haptic rendering of 2D geometric shapes with a dynamic tactile pointer. IEEE Trans Haptics 13(1):1–12

    Article  Google Scholar 

  • Hasegawa K, Shinoda H (2013) Aerial display of vibrotactile sensation with high spatial-temporal resolution using large-aperture airborne ultrasound phased array. In: Proceedings of IEEE WHC, pp 31–36

    Google Scholar 

  • Hasegawa K, Shinoda H (2018) Aerial vibrotactile display based on multiunit ultrasound phased array. IEEE Trans Haptics 11(3):367–377

    Google Scholar 

  • Hasegawa K, Shinoda H, Nara T (2020) Volumetric acoustic holography and its application to self-positioning by single channel measurement. J Appl Phys 127:244904

    Google Scholar 

  • Hoshi T, Takahashi M, Iwamoto T, Shinoda H (2010) Noncontact tactile display based on radiation pressure of airborne ultrasound. IEEE Trans Haptics 3(3):155–165

    Google Scholar 

  • Inoue S, Makino Y, Shinoda H (2015) Active touch perception produced by airborne ultrasonic haptic hologram. In: Proceedings of 2015 IEEE World Haptics Conference (WHC), Northwestern University, Evanston, Il, USA, pp 362–367

    Google Scholar 

  • Iwamoto T, Tatezono M, Shinoda H (2008) Non-contact method for producing tactile sensation using airborne ultrasound. Proc EuroHaptics 2008:504–513

    Google Scholar 

  • Jang J, Park J (2020) SPH fluid tactile rendering for ultrasonic mid-air haptics. IEEE Trans Haptics 13(1):116–122

    Google Scholar 

  • Johansson RS, Flanagan JR (2009) Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature reviews. Neuroscience 10(5):345–359

    Google Scholar 

  • Korres G, Eid M (2016) Haptogram: ultrasonic point-cloud tactile stimulation. IEEE Access 4:7758–7769

    Article  Google Scholar 

  • Lamoré PJ, Muijser HH, Keemink CJ (1986) Envelope detection of amplitude-modulated high-frequency sinusoidal signals by skin mechanoreceptors. J Acoustical Soc Am 79:1082–1085

    Google Scholar 

  • Long B, Seah SA, Carter T, Subramanian S (2014) Rendering volumetric haptic shapes in mid-air using ultrasound. ACM Trans Graph 33(6), Art. no. 181

    Google Scholar 

  • MacLean K, Enriquez M (2003) Perceptual design of haptic icons. Proc EuroHaptics 2003:351–363

    Google Scholar 

  • Marchal M, Gallagher G, Lécuyer A, Pacchierotti C (2020) Can stiffness sensations be rendered in virtual reality using mid-air ultrasound haptic technologies? Proc Eurohaptics 2020:297–306

    Google Scholar 

  • Martinez J, Harwood A, Limerick H, Clark R, Georgiou O (2019) Mid-air haptic algorithms for rendering 3D shapes. In: Proceedings of IEEE international symposium on Haptic, Audio and Visual Environments and Games (HAVE), pp 1–6

    Google Scholar 

  • Matsubayashi A, Yamaguchi T, Makino Y, Shinoda H (2021) Rendering softness using airborne ultrasound. Proc IEEE World Haptics Conf (WHC) 2021:355–360

    Article  Google Scholar 

  • Melde K, Mark AG, Qiu T, Fischer P (2016) Holo-grams for acoustics. Nature 537:518–522

    Article  Google Scholar 

  • Mizutani S, Fujiwara M, Makino Y, Shinoda H (2019) Thresholds of haptic and auditory perception in midair facial stimulation. In: IEEE international symposium on Haptic Audio-Visual Environments and Games (HAVE2019), Sunway, Malaysia, 3–4 Oct 2019

    Google Scholar 

  • Monnai Y, Hasegawa K, Fujiwara M, Yoshino K, Inoue S, Shinoda H (2014) Haptomime: mid-air haptic interaction with a floating virtual screen. In: Proceedings of 27th Annual ACM Symposium User Interface Software Technology, pp 663–667

    Google Scholar 

  • Plasencia DM, Hirayama R, Murillo RM, Subramanian S (2020) GS-PAT: high-speed multi-point sound-fields for phased arrays of transducers. ACM Trans Graph 39, 4, Article 138 (July 2020), 12 pages

    Google Scholar 

  • Purves D, Augustine GJ, Fitzpatrick D et al (eds) (2001) Neuroscience, 2nd edn. Sinauer Associates, Sunderland (MA)

    Google Scholar 

  • Reardon G, Shao Y, Dandu B, Frier W, Long B, Georgiou O, Visell Y (2019) Cutaneous wave propagation shapes tactile motion: evidence from air-coupled ultrasound. In: Proceedings of IEEE World Haptics Conference (WHC), pp 628–633

    Google Scholar 

  • Rutten I, Frier W, Bogaert L, Geerts D (2019) Invisible touch: how identifiable are mid-air haptic shapes? In: Extended abstracts of the 2019 CHI conference on human factors in computing systems (CHI EA ’19). Association for Computing Machinery, New York, NY, USA, Paper LBW0283, 1–6

    Google Scholar 

  • Suzuki S, Fujiwara M, Makino Y, Shinoda H (2020) Reducing amplitude fluctuation by gradual phase shift in midair ultrasound haptics. IEEE Trans Haptics 13(1)87–93

    Google Scholar 

  • Takahashi R, Hasegawa K, Shinoda H (2020) Tactile stimulation by repetitive lateral movement of midair ultrasound focus. IEEE Trans Haptics 13(2):334–342

    Article  Google Scholar 

  • Takahashi R, Hasegawa K, Shinoda H (2018) Lateral modulation of midair ultrasound focus for intensified vibrotactile stimuli. In: Proceedings of EuroHaptics LNCS 10894, pp 276–288

    Google Scholar 

  • Vardar Y, Güçlü B, Basdogan C (2017) Effect of waveform on tactile perception by electrovibration displayed on touch screens. IEEE Trans Haptics 10(4):488–499

    Google Scholar 

  • Verrillo RT (1979) Comparison of vibrotactile threshold and suprathreshold responses in men and women. Percep Psychophys 26:20–24

    Article  Google Scholar 

  • Verrilo RT (1963) Effect of contactor area on the vibrotactile threshold. J Acoustical Soc Am 35:1962–1966

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Hasegawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasegawa, K., Shinoda, H. (2022). Modulation Methods for Ultrasound Midair Haptics. In: Georgiou, O., Frier, W., Freeman, E., Pacchierotti, C., Hoshi, T. (eds) Ultrasound Mid-Air Haptics for Touchless Interfaces. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-031-04043-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04043-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04042-9

  • Online ISBN: 978-3-031-04043-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics