Skip to main content

Prototyping Airborne Ultrasonic Arrays

  • Chapter
  • First Online:
Ultrasound Mid-Air Haptics for Touchless Interfaces

Part of the book series: Human–Computer Interaction Series ((HCIS))

Abstract

Focused ultrasound is the base mechanism for mid-air tactile feedback generation, acoustic levitation, wireless power transfer, directional audio and other emerging applications. The basic required set-up is an ultrasonic emitter with the capability of focusing its acoustic power at a target point. Ideally, a multi-emitter phased array is used since it is capable of steering and shaping the sound field with millimetre accuracy and a time response in the order of milliseconds. There are compelling commercial products and open designs for this kind of ultrasonic arrays. Here, we review the different elements that compose an ultrasonic array: from the emitters and the driving electronics to the signal generators or algorithms. We review some techniques to simulate the output of ultrasonic arrays or to determine the emission phases for target fields. Also, we provide some suggestions for future challenges related to cost, power and heat reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andrade MA, Camargo TS, Marzo A (2018) Automatic contactless injection, transportation, merging, and ejection of droplets with a multifocal point acoustic levitator. Rev Sci Inst 89(12):125105

    Google Scholar 

  • Andrade MA, Marzo A, Adamowski JC (2020) Acoustic levitation in mid-air: recent advances, challenges, and future perspectives. Appl Phys Lett 116(25):250501

    Google Scholar 

  • Baggeroer A (2005) Sonar arrays and array processing. AIP Conf Proc Am Inst Phys 760:3–24

    Google Scholar 

  • Bourland AC, Gorman P, McIntosh J, Marzo A (2018) Project telepathy. Interact 25(5):16, 250501

    Google Scholar 

  • Brown LF, Mason JL (1996) Disposable PVDF ultrasonic transducers for nondestructive testing applications. IEEE Trans Ultras Ferroelectr Freq Control 43(4):560 (1996)

    Google Scholar 

  • Carter T, Seah SA, Long B, Drinkwater B, Subramanian S (2013) UltraHaptics: multi-point mid-air haptic feedback for touch surfaces. In: Proceedings of the 26th annual ACM symposium on user interface software and technology, pp 505–514

    Google Scholar 

  • Fenn AJ, Temme DH, Delaney WP, Courtney WE (2000) The development of phased-array radar technology. Lincoln Lab J 12(2):321

    Google Scholar 

  • Flamini R, Mazzucco C, Lombardi R, Massagrande C, Morgia F, Milani A (2019) Millimeter-wave phased arrays for 5G: An industry view on current issues and challenges. In: 2019 IEEE international symposium on phased array system and technology (PAST). IEEE, pp 1–2

    Google Scholar 

  • Foresti D, Nabavi M, Klingauf M, Ferrari A, Poulikakos D (2013) Acoustophoretic contactless transport and handling of matter in air. Proc Nat Acad Sci 110(31):12549, 250501

    Google Scholar 

  • Franklin A, Marzo A, Malkin R, Drinkwater B (2017) Three-dimensional ultrasonic trapping of micro-particles in water with a simple and compact two-element transducer. Appl Phys Lett 111(9):094101

    Google Scholar 

  • Gavrilov LR (2008) The possibility of generating focal regions of complex configurations in application to the problems of stimulation of human receptor structures by focused ultrasound. Acoust Phys 54(2):269

    Google Scholar 

  • Georgiou O, Biscione V, Harwood A, Griffiths D, Giordano M, Long B, Carter T (2017) Haptic in-vehicle gesture controls. In: Proceedings of the 9th international conference on automotive user interfaces and interactive vehicular applications adjunct, pp 233–238

    Google Scholar 

  • Georgiou O, Jeffrey C, Chen Z, Tong BX, Chan SH, Yang B, Harwood A, Carter T (2018) Touchless haptic feedback for VR rhythm games. In: 2018 IEEE conference on virtual reality and 3D user interfaces (VR), IEEE, pp 553–554

    Google Scholar 

  • Giordano F, Mattei G, Parente C, Peluso F, Santamaria R (2016) Integrating sensors into a marine drone for bathymetric 3D surveys in shallow waters. Sens 16(1):41

    Google Scholar 

  • Guo J, Chen L, Zhang Y, Yang K, Li J, Gao X (2013) Method of ultrasonic phased array imaging based on segment amplitude apodization. In: 2013 far east forum on nondestructive evaluation/testing: new technology and application. IEEE, pp 181–188

    Google Scholar 

  • Hoshi T, Iwamoto T, Shinoda H (2009) Non-contact tactile sensation synthesized by ultrasound transducers. In: World haptics 2009-third joint euroHaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems, IEEE, pp 256–260

    Google Scholar 

  • Introduction to ultrasonic drivers (2019). https://www.piezodrive.com/ultrasonic-drivers/intro-ultrasonic/

  • Kim JR, Chan S, Huang X, Ng K, Fu LP, Zhao C (2019) Demonstration of Refinity: An interactive holographic signage for new retail shopping experience. In: Extended abstracts of the 2019 CHI conference on human factors in computing systems, pp 1–4

    Google Scholar 

  • Lilliehorn T, Simu U, Nilsson M, Almqvist M, Stepinski T, Laurell T, Nilsson J, Johansson S (2005) Trapping of microparticles in the near field of an ultrasonic transducer. Ultrasonics 43(5):293

    Google Scholar 

  • Long B, Seah SA, Carter T, Subramanian S (2014) Rendering volumetric haptic shapes in mid-air using ultrasound. ACM Trans Graph (TOG) 33(6):1

    Google Scholar 

  • Marzo A, Drinkwater BW (2019) Holographic acoustic tweezers. Proc Nat Acad Sci 116(1):84

    Google Scholar 

  • Marzo A, Seah SA, Drinkwater BW, Sahoo DR, Long B, Subramanian S (2015) Holographic acoustic elements for manipulation of levitated objects. Nat Commun 6(1):1

    Google Scholar 

  • Marzo A, Barnes A, Drinkwater BW (2017) TinyLev: A multi-emitter single-axis acoustic levitator. Rev Sci Inst 88(8):085105

    Google Scholar 

  • Marzo A, Ghobrial A, Cox L, Caleap M, Croxford A, Drinkwater B (2017) Realization of compact tractor beams using acoustic delay-lines. Appl Phys Lett 110(1):014102

    Google Scholar 

  • Marzo A, Corkett T, Drinkwater BW (2017) Ultraino: An open phased-array system for narrowband airborne ultrasound transmission. IEEE Trans Ultrason Ferroelectr Freq Control 65(1):102

    Google Scholar 

  • Melde K, Mark AG, Qiu T, Fischer P (2016) Holograms for acoustics. Nature 537(7621):518

    Google Scholar 

  • Memoli G, Caleap M, Asakawa M, Sahoo DR, Drinkwater BW, Subramanian S (2017) Metamaterial bricks and quantization of meta-surfaces. Nat Commun 8(1):1

    Google Scholar 

  • Morales González R, Marzo A, Freeman E, Frier W, Georgiou O (2021) UltraPower: powering tangible & wearable devices with focused ultrasound. In: proceedings of the fifteenth international conference on tangible, embedded, and embodied interaction, pp 1–13

    Google Scholar 

  • Morales R, Ezcurdia I, Irisarri J, Andrade MA, Marzo A (2021) Generating airborne ultrasonic amplitude patterns using an open hardware phased array. Appl Sci 11(7):2981

    Google Scholar 

  • Morris RH, Dye ER, Docker P, Newton MI (2019) Beyond the Langevin horn: transducer arrays for the acoustic levitation of liquid drops. Phys Fluids 31(10):101301

    Google Scholar 

  • Norasikin MA, Martinez Plasencia D, Polychronopoulos S, Memoli G, Tokuda Y, Subramanian S (2018) SoundBender: dynamic acoustic control behind obstacles. In: proceedings of the 31st annual ACM symposium on user interface software and technology, pp 247–259

    Google Scholar 

  • Ochiai Y, Hoshi T, Rekimoto J (2014) Pixie dust: graphics generated by levitated and animated objects in computational acoustic-potential field. ACM Trans Graph (TOG) 33(4):1

    Google Scholar 

  • Ochiai Y, Hoshi T, Suzuki I (2017) Holographic whisper: rendering audible sound spots in three-dimensional space by focusing ultrasonic waves. In: proceedings of the 2017 CHI conference on human factors in computing systems, pp 4314–4325

    Google Scholar 

  • O’Conaill B, Provan J, Schubel J, Hajas D, Obrist M, Corenthy L (2020) Improving immersive experiences for visitors with sensory impairments to the aquarium of the pacific. Extended abstracts of the 2020 CHI conference on human factors in computing systems, pp 1–8

    Google Scholar 

  • Ohmori T, Abe Y, Fujiwara M, Makino Y, Shinoda H (2021) Remote friction control on 3-dimensional object made of polystyrene foam using airborne ultrasound focus. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3411763.3451598

  • O’Neil H (1949) Theory of focusing radiators. J Acoust Soc Am 21(5):516

    Google Scholar 

  • Open source ultrasonic phased array. https://hackaday.io/project/159467-open-source-ultrasonic-phased-array

  • Plasencia DM, Hirayama R, Montano-Murillo R, Subramanian S (2020) GS-PAT: high-speed multi-point sound-fields for phased arrays of transducers. ACM Trans Graph (TOG) 39(4):138

    Google Scholar 

  • Price A, Long B (2018) Fibonacci spiral arranged ultrasound phased array for mid-air haptics. In: 2018 IEEE international ultrasonics symposium (IUS). IEEE, pp 1–4

    Google Scholar 

  • Rakkolainen I, Sand A, Raisamo R (2019) A survey of mid-air ultrasonic tactile feedback. In: 2019 IEEE international symposium on multimedia (ISM). IEEE, pp 94–944

    Google Scholar 

  • Ramachandran N(2010) Modeling and control of acoustic levitation for dust control application. Southern Illinois University at Carbondale

    Google Scholar 

  • Rathod VT (2019) A review of electric impedance matching techniques for piezoelectric sensors, actuators and transducers. Electron 8(2):169

    Google Scholar 

  • Rosnitskiy PB, Vysokanov BA, Gavrilov LR, Sapozhnikov OA, Khokhlova VA (2018) Method for designing multielement fully populated random phased arrays for ultrasound surgery applications. In: IEEE transactions on ultrasonics, ferroelectrics, and frequency control 65(4):630

    Google Scholar 

  • Schappe RS, Barbosa C (2017) A simple, inexpensive acoustic levitation apparatus. Phys Teach 55(1):6

    Google Scholar 

  • Seip R, Chen W, Tavakkoli J, Frizzell L, Sanghvi N (2003) High-intensity focused ultrasound (HIFU) phased arrays: Recent developments in transrectal transducers and driving electronics design. In: proceeding 3rd international symposium therapeutic ultrasound, pp 423–428

    Google Scholar 

  • Svilainis L, MotiejĹ«nas G (2006) Power amplifier for ultrasonic transducer excitation. Ultragarsas/Ultrasound 58(1):30

    Google Scholar 

  • Topete J, Alvarez-Arenas TG (2014) Annular multifrequency piezoelectric array for enhanced wideband ultrasonic response. SENSORS, 2014 IEEE. IEEE, pp 102–105

    Google Scholar 

  • Ultrasonic screwdriver in air-angular momentum transfer to matter (2015) https://www.youtube.com/watch?v=vqe3YvhivYU

  • Watanabe A, Hasegawa K, Abe Y (2018) Contactless fluid manipulation in air: droplet coalescence and active mixing by acoustic levitation. Sci Rep 8(1):1

    Google Scholar 

  • Weber J, Rey C, Neuefeind J, Benmore C (2009) Acoustic levitator for structure measurements on low temperature liquid droplets. Rev Sci Inst 80(8):083904

    Google Scholar 

  • Zehnter S, Ament C (2019) A modular FPGA-based phased array system for ultrasonic levitation with MATLAB. In: 2019 IEEE international ultrasonics symposium (IUS), IEEE, pp 654–658

    Google Scholar 

Download references

Acknowledgements

This research was funded by Jovenes Investigadores Grant (UPNA, Spain) and from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101017746, TOUCHLESS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asier Marzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marzo, A. (2022). Prototyping Airborne Ultrasonic Arrays. In: Georgiou, O., Frier, W., Freeman, E., Pacchierotti, C., Hoshi, T. (eds) Ultrasound Mid-Air Haptics for Touchless Interfaces. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-031-04043-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04043-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04042-9

  • Online ISBN: 978-3-031-04043-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics