Skip to main content

Sound-Field Creation for Haptic Reproduction

  • Chapter
  • First Online:
Ultrasound Mid-Air Haptics for Touchless Interfaces

Part of the book series: Human–Computer Interaction Series ((HCIS))

Abstract

In ultrasound haptics, a tactile sensation is evoked on human skin that touches the high sound pressure area generated due to the interference of ultrasonic waves. Therefore, by controlling the distribution of sound pressure amplitude using a transducer array, it is possible to create tactile sensations at multiple points simultaneously. In this chapter, we first describe the relationship between the complex gains of the transducer array and the generated sound field. Then, we provide various algorithms to control the amplitude pattern based on this relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Frier W, Ablart D, Chilles J, Long B, Giordano M, Obrist M, Subramanian S (2018) Using spatiotemporal modulation to draw tactile patterns in mid-air. In: International conference on human haptic sensing and touch enabled computer applications. Springer, pp 270–281

    Google Scholar 

  • Gerchberg RW (1972) A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35:237–246

    Google Scholar 

  • Hasegawa T, Kido T, Iizuka T, Matsuoka C (2000) A general theory of Rayleigh and Langevin radiation pressures. Acoustical Sci Technol 21(3):145–152

    Google Scholar 

  • Hertzberg Y, Naor O, Volovick A, Shoham S (2010) Towards multifocal ultrasonic neural stimulation: pattern generation algorithms. J Neural Eng 7(5):056002

    Google Scholar 

  • Inoue S, Makino Y, Shinoda H (2015) Active touch perception produced by airborne ultrasonic haptic hologram. In: 2015 IEEE World Haptics Conference (WHC). IEEE, pp 362–367

    Google Scholar 

  • Inoue S, Makino Y, Shinoda H (2016) Mid-air ultrasonic pressure control on skin by adaptive focusing. In: International conference on human haptic sensing and touch enabled computer applications. Springer, Heidelberg, pp 68–77

    Google Scholar 

  • Kuroki S, Watanabe J, Nishida S (2016) Neural timing signal for precise tactile timing judgments. J Neurophysiol 115(3):1620–1629 PMID: 26843600

    Article  Google Scholar 

  • Long B, Seah SA, Carter T, Subramanian S (2014) Rendering volumetric haptic shapes in mid-air using ultrasound. ACM Trans Graphics (TOG) 33(6):1–10

    Article  Google Scholar 

  • Madsen K, Nielsen H, Tingleff O (2004) Methods for non-linear least squares problems, 2nd edn, p 60

    Google Scholar 

  • Marzo A, Drinkwater BW (2019) Holographic acoustic tweezers. Proc Natl Acad Sci 116(1):84–89

    Article  Google Scholar 

  • Matsubayashi A, Makino Y, Shinoda H (2020) Rendering ultrasound pressure distribution on hand surface in real-time. In: International conference on human haptic sensing and touch enabled computer applications. Springer, Heidelberg, pp 407–415

    Google Scholar 

  • Morales R, Ezcurdia I, Irisarri J, Andrade MA, Marzo A (2021) Generating airborne ultrasonic amplitude patterns using an open hardware phased array. Appl Sci 11(7):2981

    Google Scholar 

  • Plasencia DM, Hirayama R, Montano-Murillo R, Subramanian S (2020) Gs-pat: high-speed multi-point sound-fields for phased arrays of transducers. ACM Trans Graphics (TOG) 39(4):138-1

    Google Scholar 

  • Suzuki S, Fujiwara M, Makino Y, Shinoda H (2021) Radiation pressure field reconstruction for ultrasound midair haptics by greedy algorithm with brute-force search. IEEE Trans Haptics

    Google Scholar 

  • Takahashi R, Hasegawa K, Shinoda H (2018) Lateral modulation of midair ultrasound focus for intensified vibrotactile stimuli. In: International conference on human haptic sensing and touch enabled computer applications. Springer, Heidelberg, pp 276–288

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Matsubayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matsubayashi, A., Inoue, S., Suzuki, S., Shinoda, H. (2022). Sound-Field Creation for Haptic Reproduction. In: Georgiou, O., Frier, W., Freeman, E., Pacchierotti, C., Hoshi, T. (eds) Ultrasound Mid-Air Haptics for Touchless Interfaces. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-031-04043-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04043-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04042-9

  • Online ISBN: 978-3-031-04043-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics