Skip to main content

Introduction to Ultrasonic Mid-Air Haptic Effects

  • Chapter
  • First Online:
Ultrasound Mid-Air Haptics for Touchless Interfaces

Part of the book series: Human–Computer Interaction Series ((HCIS))

Abstract

In this chapter, we discuss the basic physical principles of ultrasonic mid-air haptics. Our aim is to provide a holistic introduction to the technology, facilitate a better understanding of these principles, and help newcomers to join this exciting field of research in following the rest of this book. To that end, we have assumed a simplified and idealized situation and divide our discussion into four sub-topics: acoustic radiation pressure, phased array focusing, vibrotactile stimulation, and by-product audible sounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Awatani J (1955) Studies on acoustic radiation pressure. I. (General considerations). J Acoust Soc Am 27(2):278–281

    Google Scholar 

  • Bolanowski SJ Jr, Gescheider GA, Verrillo RT, Checkosky CM (1988) Four channels mediate the mechanical aspects of touch. J Acoust Soc Am 84(5):1680–1694

    Article  Google Scholar 

  • Carter T, Seah SA, Long B, Drinkwater B, Subramanian S (2013) UltraHaptics: multi-point haptic feedback for touch surfaces. In: Proceedings of 26th annual ACM symposium on user interface software and technology (UIST’13), pp 505–514

    Google Scholar 

  • Hasegawa T, Kido T, Iizuka T, Matsuoka C (2000) A general theory of Rayleigh and Langevin radiation pressures. Acoust Sci Technol 21:145–152

    Google Scholar 

  • Hoshi T Low-noise ultrasonic wave focusing apparatus. U.S. Patent, US20170144190A1, 2020-02-25

    Google Scholar 

  • Hoshi T, Takahashi M, Iwamoto T, Shinoda H (2010) Noncontact tactile display based on radiation pressure of airborne ultrasound. IEEE Trans Haptics 3(3):155–165

    Article  Google Scholar 

  • Hoshi T (2014) Noncontact tactile display using airborne ultrasound. In: Proceedings of 21st international display workshops, pp 1529–1533

    Google Scholar 

  • Hoshi T (2015) Variation of tactile feelings of focused ultrasound: modulation frequency and hand movement. In: Proceedings of ACM SIGGRAPH Asia 2015, workshop on haptic media and contents design. Article 18

    Google Scholar 

  • Hoshi T (2016) Gradual phase shift to suppress noise from airborne ultrasound tactile display. In: ACM CHI 2016 workshop on mid-air haptics and displays: systems for un-instrumented mid-air interactions, session 2: provide visual and haptic feedback

    Google Scholar 

  • Ito Y (2015) High-intensity aerial ultrasonic source with a stripe-mode vibrating plate for improving convergence capability. Acoust Sci Technol 36:216–224

    Article  Google Scholar 

  • Iwamoto T, Tatezono M, Shinoda H (2008) Non-contact method for producing tactile sensation using airborne ultrasound. In: Haptics: perception, devices and scenarios: 6th international conference, Eurohaptics 2008 proceedings (lecture notes in computer science), pp 504–513

    Google Scholar 

  • Long B, Seah SA, Carter T, Subramanian S (2014) Rendering volumetric haptic shapes in mid-air using ultrasound. ACM Trans Graph 33:181:1–181:10

    Google Scholar 

  • Morales R, Marzo A, Subramanian S, MartĂ­nez D (2019) LeviProps: animating levitated optimized fabric structures using holographic acoustic tweezers. In: Proceedings of 32nd annual ACM symposium on user interface software and technology (UIST’19), pp 651–661

    Google Scholar 

  • Price A, Long B (2018) Fibonacci spiral arranged ultrasound phased array for mid-air haptics. In: Proceedings of IEEE international ultrasonics symposium (IUS), pp 1–4

    Google Scholar 

  • Suzuki S, Fujiwara M, Makino Y, Shinoda H (2020) Reducing amplitude fluctuation by gradual phase shift in mid-air ultrasound haptics. IEEE Trans Haptics 13(1):87–93

    Article  Google Scholar 

  • Vallbo Ă…B, Johansson RS (1984) Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum Neurobiol 3:3–14

    Google Scholar 

  • Yoneyama M, Fujimoto J, Kawamo Y, Sasabe S (1983) The audio spotlight: an application of nonlinear interaction of sound waves to a new type of loudspeaker design. J Acoust Soc Am 73(5):1532–1536

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Hoshi .

Editor information

Editors and Affiliations

Appendices

Appendix

A. Derivation of Spatial Distribution of Ultrasound on Focal Plane

The process by which a phased array forms a single ultrasonic focal point can be expressed using the following mathematical formulas. We assume the coordinate system shown in Fig. 11. The XY coordinate is on the surface of the phased array \(\left( {x,y} \right)\). The focal plane, \(\left( {x_{\rm{f}},y_{\rm{f}} } \right)\), is separated by the distance \(r\) [m] from the surface. Let the center coordinate of the \(m\)-th and \(n\)-th transducers in the X and Y directions, respectively, be \(\left( {x_{m} ,y_{n} ,0} \right)\), and the center coordinate of the focal point be \(\left( {x_{\rm{c}} ,y_{\rm{c}} ,r} \right)\).

Fig. 11
A schematic diagram of the equations can be used to identify the requirements by which a linear array creates a single ultrasonic focus. 2 planes on a Cartesian coordinate system, phased array at the axes and focal array above.

Coordinate system for the formulation of phased array focusing © IEEE. Reprinted, with permission, from Hoshi et al. (2010)

Here, we ignore the directivity of the transducer, and assume that a spherical wave is radiated from each transducer with an appropriate phase to generate a single focal point. The RMS ultrasonic sound pressure \(p_{r}\) [Pa] (inversely proportional to \(r\)) is produced on the focal plane by each transducer and is a paraxial approximation. A square-shaped phased array is assumed; this is the shape of the majority of current ultrasonic mid-air haptic devices. The \(N\) transducers are lined up in both the X and Y directions. At this time, the distribution of ultrasonic sound pressure generated on the focal plane is given as follows:

$$\begin{aligned} & p\left( {x_{\mathrm{f}} ,y_{\mathrm{f}} } \right) = \mathop \sum \limits_{m = 0}^{N - 1} \mathop \sum \limits_{n = 0}^{N - 1} \sqrt 2 ~p_r {\text{e}}^{ - \mathrm{j}kr^{\prime} } {\text{e}}^{\,\mathrm{j}\left( {kr^{\prime\prime} - \omega t} \right)} \\ & \quad \approx \sqrt 2 ~p_r {\text{e}}^{ - \mathrm{j}\omega t} {\text{e}}^{\,\mathrm{j}\left\{ {\frac{k}{{2r}}\left( {x_{\mathrm{f}} ^2 + y_{\mathrm{f}} ^2 - x_{\mathrm{c}} ^2 - y_{\mathrm{c}} ^2 } \right) - \xi \left( {\nu _x + \nu _y } \right)} \right\}} \mathop \sum \limits_{m = 0}^{N - 1} {\text{e}}^{ - \mathrm{j}dm\nu _x } \mathop \sum \limits_{n = 0}^{N - 1} {\text{e}}^{ - \mathrm{j}dn\nu _y } \\ & \quad = \sqrt 2 p_r {\text{e}}^{ - \mathrm{j}\omega t} {\text{e}}^{\,\mathrm{j}\left\{ {\frac{k}{{2r}}\left( {x_{\mathrm{f}} ^2 + y_{\mathrm{f}} ^2 - x_{\mathrm{c}} ^2 - y_{\mathrm{c}} ^2 } \right) - \xi \left( {\nu _x + \nu _y } \right)} \right\}} \left( {\frac{{1 - {\text{e}}^{ - \mathrm{j}Nd\nu _x } }}{{1 - {\text{e}}^{ - \mathrm{j}d\nu _x } }}} \right)\left( {\frac{{1 - {\text{e}}^{ - \mathrm{j}Nd\nu _y } }}{{1 - {\text{e}}^{ - \mathrm{j}d\nu _y } }}} \right) \\ & \quad = \sqrt 2 p_r {\text{e}}^{ - \mathrm{j}\omega t} {\text{e}}^{\,\mathrm{j}\left\{ {\frac{k}{{2r}}\left( {x_{\mathrm{f}} ^2 + y_{\mathrm{f}} ^2 - x_{\mathrm{c}} ^2 - y_{\mathrm{c}} ^2 } \right) - \xi \left( {\nu _x + \nu _y } \right)} \right\}} {\text{e}}^{ - \mathrm{j}\frac{{\left( {N - 1} \right)d}}{2}\left( {\nu _x + \nu _y } \right)} \\ & \quad \quad \quad \times \left( {\frac{{{\text{e}}^{\,\mathrm{j}\frac{{Nd\nu _x }}{2}} - {\text{e}}^{ - \mathrm{j}\frac{{Nd\nu _x }}{2}} }}{{{\text{e}}^{\,\mathrm{j}\frac{{d\nu _x }}{2}} - {\text{e}}^{ - \mathrm{j}\frac{{d\nu _x }}{2}} }}} \right)\left( {\frac{{{\text{e}}^{\,\mathrm{j}\frac{{Nd\nu _y }}{2}} - {\text{e}}^{ - \mathrm{j}\frac{{Nd\nu _y }}{2}} }}{{{\text{e}}^{\,\mathrm{j}\frac{{d\nu _y }}{2}} - {\text{e}}^{ - \mathrm{j}\frac{{d\nu _y }}{2}} }}} \right) \\ & \quad = \sqrt 2 ~p_r ~{\text{e}}^{\,\mathrm{j}\left\{ {\varphi \left( {x_{\mathrm{f}} ,~y_{\mathrm{f}} } \right) - \omega t} \right\}} ~\frac{{\sin \frac{{Nd\nu _x }}{2}}}{{\sin \frac{{d\nu _x }}{2}}}~\frac{{\sin \frac{{Nd\nu _y }}{2}}}{{\sin \frac{{d\nu _y }}{2}}} \\ & \quad = \sqrt 2 ~p_r ~{\text{e}}^{\,\mathrm{j}\left\{ {\varphi \left( {x_{\mathrm{f}} ,~y_{\mathrm{f}} } \right) - \omega t} \right\}} \left( {\frac{{\frac{{Nd\nu _x }}{2}~\frac{{Nd\nu _y }}{2}}}{{\frac{{d\nu _x }}{2}~\frac{{d\nu _y }}{2}}}} \right)\frac{{\sin \left( {\frac{{Nd\nu _x }}{2}} \right)\sin \left( {\frac{{Nd\nu _y }}{2}} \right)/\left( {\frac{{Nd\nu _x }}{2}~\frac{{Nd\nu _y }}{2}} \right)}}{{\sin \left( {\frac{{d\nu _x }}{2}} \right)\sin \left( {\frac{{d\nu _y }}{2}} \right)/\left( {\frac{{d\nu _x }}{2}~\frac{{d\nu _y }}{2}} \right)}} \\ & \quad = \sqrt 2 ~p_r ~N^2 ~\frac{{\mathrm{sinc}\left( {\frac{{Nd\nu _x }}{2},\frac{{Nd\nu _y }}{2}} \right)}}{{\mathrm{sinc}\left( {\frac{{d\nu _x }}{2},\frac{{d\nu _y }}{2}} \right)}}~{\text{e}}^{\,\mathrm{j}\left\{ {\varphi \left( {x_{\mathrm{f}} ,~y_{\mathrm{f}} } \right) - \omega t} \right\}} \\ \end{aligned}$$

In the above, \(\rm{j}\) is an imaginary unit. \(k\) [rad/m] and \(\omega\) [rad/s] are the wavenumber and angular frequency, respectively. \(t\) [s] is the time. The definition of the sinc function is \(\rm{sinc} \mathit{\left( {x,y} \right) \equiv \sin \left( x \right)\sin \left( y \right)/xy}\).

The first line represents the operation of multiplying the spherical wave coming from a transducer \(\sqrt 2 p_{r} {\text{e}}^{{\,\mathrm{j}\left( {kr^{\prime \prime } - \omega t} \right)}}\) by the phase control factor to focus the waves \({\text{e}}^{{ - \mathrm{j}kr^{\prime } }}\) and then adding them together. In the second line, the Fresnel approximation is applied to \(r^{\prime}\) and \(r^{\prime\prime}\), where \(r^{\prime}\) [m] is the distance from the \(m\)-th row and \(n\)-th column transducer to the focal point, and \(r^{\prime\prime}\) [m] is the distance from the transducer to the arbitrary position \(\left( {x_{\mathrm{f}} ,y_{\mathrm{f}} } \right)\) on the focal plane.

$$\begin{aligned} r^{\prime} & \equiv \sqrt {\left( {x_{m} - x_{\mathrm{c}} } \right)^{2} + \left( {y_{n} - y_{\mathrm{c}} } \right)^{2} + r^{2} } \\ & \approx r + \frac{{\left( {x_{m} - x_{\mathrm{c}} } \right)^{2} + \left( {y_{n} - y_{\mathrm{c}} } \right)^{2} }}{2r} \\ r^{\prime\prime} & \equiv \sqrt {\left( {x_{m} - x_{\mathrm{f}} } \right)^{2} + \left( {y_{n} - y_{\mathrm{f}} } \right)^{2} + r^{2} } \\ & \approx r + \frac{{\left( {x_{m} - x_{\mathrm{f}} } \right)^{2} + \left( {y_{n} - y_{\mathrm{f}} } \right)^{2} }}{2r} \\ \end{aligned}$$

Furthermore, changes of the variables are applied as follows:

$$\begin{aligned} \nu_{x} & \equiv \frac{k}{r}\left( {x_{\mathrm{f}} - x_{\mathrm{c}} } \right) \\ \nu_{y} & \equiv \frac{k}{r}\left( {y_{\mathrm{f}} - y_{\mathrm{c}} } \right) \\ \end{aligned}$$

Then, the positions of the \(m\)-th and \(n\)-th transducers are written in another form, that is, \(\left( {x_{m} ,y_{n} } \right) = \left( {md + \xi ,nd + \xi } \right)\), using the interval between the centers of neighboring transducers \(d\) [m] and an offset \(\xi = - \left( {N - 1} \right)d/2\). The third line is obtained by the summation formula of the geometric series, i.e., \(\sum\nolimits_{n = 0}^{N - 1} {\alpha^{n} = \left( {1 - \alpha^{N} } \right)/\left( {1 - \alpha } \right)}\). The fourth line is the middle of the formula transformation to the fifth line. By extracting \({\text{e}}^{ - \mathrm{j}\alpha /2}\) from \(\left( {1 - {\text{e}}^{ - \mathrm{j}\alpha } } \right)\), a form of \(\left( {{\text{e}}^{\,\mathrm{j}\alpha /2} - {\text{e}}^{ - \mathrm{j}\alpha /2} } \right)\) is obtained. The fifth line is derived because \(\left( {{\text{e}}^{\,\mathrm{j}\alpha /2} - {\text{e}}^{ - \mathrm{j}\alpha /2} } \right) = 2\mathrm{j}\sin \left( {\alpha /2} \right)\). \(\varphi \left( {x_{\mathrm{f}} ,y_{\mathrm{f}} } \right)\) is the phase delay and depends on the position on the focal plane:

$$\varphi \left( {x_{\mathrm{f}} ,y_{\mathrm{f}} } \right) \equiv \frac{k}{2r}\left( {x_{\mathrm{f}}^{2} + y_{\mathrm{f}}^{2} - x_{\mathrm{c}}^{2} - y_{\mathrm{c}}^{2} } \right) - \left\{ {\xi + \frac{{\left( {N - 1} \right)d}}{2}} \right\}\left( {\nu_{x} + \nu_{y} } \right)$$

The sixth line is again the middle of the formula transformation to the seventh line. By extracting \(\alpha /2\) from \(\sin \left( {\alpha /2} \right)\), a form of \(\sin \left( {\alpha /2} \right)/\left( {\alpha /2} \right)\) is obtained; thus, the sinc function finally appears in the seventh line.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoshi, T. (2022). Introduction to Ultrasonic Mid-Air Haptic Effects. In: Georgiou, O., Frier, W., Freeman, E., Pacchierotti, C., Hoshi, T. (eds) Ultrasound Mid-Air Haptics for Touchless Interfaces. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-031-04043-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04043-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04042-9

  • Online ISBN: 978-3-031-04043-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics