Skip to main content

Microfluidic-Driven Biofabrication and the Engineering of Cancer-Like Microenvironments

  • Chapter
  • First Online:
Microfluidics and Biosensors in Cancer Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1379))

Abstract

Despite considerable advances in cancer research and oncological treatments, the burden of the disease is still extremely high. While past research has been cancer cell centered, it is now clear that to understand tumors, the models that serve as a framework for research and therapeutic testing need to improve and integrate cancer microenvironment characteristics such as mechanics, architecture, and cell heterogeneity. Microfluidics is a powerful tool for biofabrication of cancer-relevant architectures given its capacity to manipulate cells and materials at very small dimensions and integrate varied living tissue characteristics. This chapter outlines the current microfluidic toolbox for fabricating living constructs, starting by explaining the varied configurations of 3D soft constructs microfluidics enables when used to process hydrogels. Then, we analyze the possibilities to control material flows and create space varying characteristics such as gradients or advanced 3D micro-architectures. Envisioning the trend to approach the complexity of tumor microenvironments also at higher dimensions, we discuss microfluidic-enabled 3D bioprinting and recent advances in that arena. Finally, we summarize the future possibilities for microfluidic biofabrication to tackle important challenges in cancer 3D modelling, including tools for the fast quantification of biological events toward data-driven and precision medicine approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guimarães CF, Gasperini L, Marques AP, Reis RL (2020) The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater 5:351–370

    Article  Google Scholar 

  2. Kalli M, Stylianopoulos T (2018) Defining the role of solid stress and matrix stiffness in cancer cell proliferation and metastasis. Front. Oncologia 8

    Google Scholar 

  3. Mirdamadi E, Tashman JW, Shiwarski DJ et al (2020) FRESH 3D bioprinting a full-size model of the human heart. ACS Biomater Sci Eng 6:6453–6459

    Article  CAS  PubMed  Google Scholar 

  4. Bernal PN, Delrot P, Loterie D et al (2019) Volumetric bioprinting of complex living-tissue constructs within seconds. Adv Mater 31

    Google Scholar 

  5. Bakht SM, Gomez-Florit M, Lamers T et al (2021) 3D bioprinting of miniaturized tissues embedded in self-assembled nanoparticle-based Fibrillar platforms. Adv Funct Mater 31

    Google Scholar 

  6. Lee JM, Ng WL, Yeong WY (2019) Resolution and shape in bioprinting: strategizing towards complex tissue and organ printing. Appl. Phys Rev 6

    Google Scholar 

  7. Miri AK, Mirzaee I, Hassan S et al (2019) Effective bioprinting resolution in tissue model fabrication. Lab Chip 19:2019–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng Y, Yu Y, Fu F et al (2016) Controlled fabrication of bioactive microfibers for creating tissue constructs using microfluidic techniques. ACS Appl Mater Interfaces 8:1080–1086

    Article  CAS  PubMed  Google Scholar 

  9. Cheng Y, Zheng F, Lu J et al (2014) Bioinspired multicompartmental microfibers from microfluidics. Adv Mater 26:5184–5190

    Article  CAS  PubMed  Google Scholar 

  10. Grolman JM, Zhang D, Smith AM et al (2015) Rapid 3D extrusion of synthetic tumor microenvironments. Adv Mater 27:5512–5517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kato-Negishi M, Onoe H, Ito A, Takeuchi S (2017) Rod-shaped neural units for aligned 3D neural network connection. Adv Healthc Mater 6:1–7

    Google Scholar 

  12. Xu P, Xie R, Liu Y et al (2017) Bioinspired microfibers with embedded perfusable helical channels. Adv Mater 29:1–7

    Google Scholar 

  13. Gasperini L, Mano JF, Reis RL (2014) Natural polymers for the microencapsulation of cells. J R Soc Interface 11:20140817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Young S, Wong M, Tabata Y, Mikos AG (2005) Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 109:256–274

    Article  CAS  PubMed  Google Scholar 

  15. Caliari SR, Burdick JA (2016) A practical guide to hydrogels for cell culture. Nat Methods 13:405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ushikubo FY, Birribilli FS, Oliveira DRB, Cunha RL (2014) Y- and T-junction microfluidic devices: effect of fluids and interface properties and operating conditions. Microfluid Nanofluidics:1–10

    Google Scholar 

  17. Smeds KA, Grinstaff MW, Pfister-serres A et al (2001) Photocrosslinkable polysaccharides for in situ hydrogel formation. J Biomed Mater Res 54:115–121

    Article  CAS  PubMed  Google Scholar 

  18. Heo J, Koh RH, Shim W et al (2016) Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering. Drug Deliv Transl Res 6:148–158

    Article  CAS  PubMed  Google Scholar 

  19. Loessner D, Meinert C, Kaemmerer E et al (2016) Functionalization, preparation and use of cell-laden gelatin methacryloyl–based hydrogels as modular tissue culture platforms. Nat Protoc 11:727–746

    Article  CAS  PubMed  Google Scholar 

  20. Jiao J, Burgess DJ (2003) Rheology and stability of water-in-oil-in-water multiple emulsions containing span 83 and tween 80. AAPS PharmSci 5

    Google Scholar 

  21. Miller R (2016) Emulsifiers: types and uses. Encycl Food Heal:498–502

    Google Scholar 

  22. Zhao H, Chen Y, Shao L et al (2018) Airflow-assisted 3D bioprinting of human heterogeneous microspheroidal organoids with microfluidic nozzle. Small 14:1–7

    Google Scholar 

  23. Onoe H, Okitsu T, Itou A et al (2013) Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat Mater 12:584–590

    Article  CAS  PubMed  Google Scholar 

  24. Kim JY, Lee H, Jin EJ et al (2021) A microfluidic device to fabricate one-step cell bead-laden hydrogel struts for tissue engineering. Small 2106487:1–17

    Google Scholar 

  25. Canadas RF, Ren T, Marques AP et al (2018) Biochemical gradients to generate 3D heterotypic-like tissues with isotropic and anisotropic architectures. Adv Funct Mater 28

    Google Scholar 

  26. Yang L, Pijuan-Galito S, Rho HS et al (2021) High-throughput methods in the discovery and study of biomaterials and materiobiology. Chem Rev 121:4561–4677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burdick JA, Khademhosseini A, Langer R (2004) Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir 20:8–11

    Article  CAS  Google Scholar 

  28. Pedron S, Becka E, Harley BA (2015) Spatially gradated hydrogel platform as a 3D engineered tumor microenvironment. Adv Mater 27:1567–1572

    Article  CAS  PubMed  Google Scholar 

  29. Guimarães CF, Gasperini L, Ribeiro RS et al (2020) High-throughput fabrication of cell-laden 3D biomaterial gradients. Mater Horiz 7:2414–2421

    Article  Google Scholar 

  30. Xin S, Dai J, Gregory CA et al (2020) Creating physicochemical gradients in modular microporous annealed particle hydrogels via a microfluidic method. Adv Funct Mater:30

    Google Scholar 

  31. Highley CB, Song KH, Daly AC, Burdick JA (2019) Jammed microgel inks for 3D printing applications. Adv Sci 6

    Google Scholar 

  32. Kochetkova M, Samuel MS (2021) Differentiation of the tumor microenvironment: are CAFs the organizer? Trends Cell Biol:1–10

    Google Scholar 

  33. Mahadik BP, Wheeler TD, Skertich LJ et al (2014) Microfluidic generation of gradient hydrogels to modulate hematopoietic stem cell culture environment. Adv Healthc Mater 3:449–458

    Article  CAS  PubMed  Google Scholar 

  34. Ngo MT, Barnhouse VR, Gilchrist AE et al (2021) Hydrogels containing gradients in vascular density reveal dose-dependent role of angiocrine cues on stem cell behavior. Adv Funct Mater. https://doi.org/10.1002/adfm.202101541

  35. Liao D, Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26:281–290

    Article  CAS  PubMed  Google Scholar 

  36. Wang W, Li L, Ding M et al (2018) A microfluidic hydrogel chip with orthogonal dual gradients of matrix stiffness and oxygen for cytotoxicity test. Biochip J 12:93–101

    Article  CAS  Google Scholar 

  37. Berger Fridman I, Ugolini GS, Vandelinder V et al (2021) High throughput microfluidic system with multiple oxygen levels for the study of hypoxia in tumor spheroids. Biofabrication 13

    Google Scholar 

  38. Zhu D, Trinh P, Li J et al (2021) Gradient hydrogels for screening stiffness effects on patient-derived glioblastoma xenograft cellfates in 3D. J Biomed Mater Res A 109:1027–1035

    Article  CAS  PubMed  Google Scholar 

  39. Sutera SP, Skalak R (1993) The history of Poiseuille’s law. Annu Rev Fluid Mech 25:1–20

    Article  Google Scholar 

  40. Uludag H, De Vos P, Tresco P a (2000) Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 42:29–64

    Google Scholar 

  41. Gasperini L, Maniglio D, Migliaresi C (2011) Electro hydro dynamic (EHD) encapsulation of cells in alginate based hydrogels. In: International Journal of Artificial Organs. Wichtig Editore s. r. l., Milano, p 685

    Google Scholar 

  42. Wong TY, Preston LA, Schiller NL (2000) ALGINATE LYASE: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu Rev Microbiol 54:289–340

    Article  CAS  PubMed  Google Scholar 

  43. Kuhn PT, Zhou Q, van der Boon TAB et al (2016) Double linear gradient biointerfaces for determining two- parameter dependent stem cell behavior. ChemNanoMat. https://doi.org/10.1002/cnma.201600028

  44. Zhou Q, Castañeda Ocampo O, Guimarães CF et al (2017) Screening platform for cell contact guidance based on inorganic biomaterial micro/nanotopographical gradients. ACS Appl Mater Interfaces:9

    Google Scholar 

  45. Zhou Q, Ge L, Guimarães CF et al (2018) Development of a novel orthogonal double gradient for high-throughput screening of Mesenchymal stem cells–materials interaction. Adv Mater Interfaces 5:4–11

    Google Scholar 

  46. Araújo-Custódio S, Gomez-Florit M, Tomás AR et al (2019) Injectable and magnetic responsive hydrogels with bioinspired ordered structures. ACS Biomater Sci Eng 5:1392–1404

    Article  PubMed  CAS  Google Scholar 

  47. Rose JC, Gehlen DB, Haraszti T et al (2018) Biofunctionalized aligned microgels provide 3D cell guidance to mimic complex tissue matrices. Biomaterials. https://doi.org/10.1016/j.biomaterials.2018.02.001

  48. Canadas RF, Ren T, Tocchio A et al (2018) Tunable anisotropic networks for 3-D oriented neural tissue models. Biomaterials 181:402–414

    Article  CAS  PubMed  Google Scholar 

  49. Bolívar-Monsalve EJ, Ceballos-González CF, Borrayo-Montaño KI et al (2021) Continuous chaotic bioprinting of skeletal muscle-like constructs. Bioprinting 21

    Google Scholar 

  50. Samandari M, Alipanah F, Majidzadeh-A K et al (2021) Controlling cellular organization in bioprinting through designed 3D microcompartmentalization. Appl Phys Rev 8

    Google Scholar 

  51. Trujillo-De Santiago G, Alvarez MM, Samandari M et al (2018) Chaotic printing: using chaos to fabricate densely packed micro- and nanostructures at high resolution and speed. Mater Horizons 5:813–822

    Article  CAS  Google Scholar 

  52. Guimarães CF, Gasperini L, Marques AP, Reis RL (2021) 3D flow-focusing microfluidic biofabrication: one-chip-fits-all hydrogel fiber architectures. Appl Mater Today 23

    Google Scholar 

  53. Elsherif M, Hassan MU, Yetisen AK, Butt H (2019) Hydrogel optical fibers for continuous glucose monitoring. Biosens Bioelectron 137:25–32

    Article  CAS  PubMed  Google Scholar 

  54. Guimarães CF, Ahmed R, Marques AP et al (2021) Engineering hydrogel-based biomedical photonics: design. Adv Mater, fabrication and applications. https://doi.org/10.1002/adma.202006582

    Book  Google Scholar 

  55. Guo J, Liu X, Jiang N et al (2016) Highly stretchable, strain sensing hydrogel optical fibers. Adv Mater 28:10244–10249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yetisen AK, Jiang N, Fallahi A et al (2017) Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid. Adv Mater:29

    Google Scholar 

  57. Guimarães CF, Ahmed R, Mataji-Kojouri A et al (2021) Engineering polysaccharide-based hydrogel photonic constructs: from multiscale detection to the biofabrication of living optical fibers. Adv Mater:2105361

    Google Scholar 

  58. Ma J, Wang Y, Liu J (2018) Bioprinting of 3D tissues/organs combined with microfluidics. RSC Adv 8:21712–21727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Richard C, Richard C, Neild A et al (2020) The emerging role of microfluidics in multi-material 3D bioprinting. Lab Chip 20:2044–2056

    Article  CAS  PubMed  Google Scholar 

  60. Colosi C, Shin SR, Manoharan V et al (2016) Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv Mater 28:677–684a

    Article  CAS  PubMed  Google Scholar 

  61. Costantini M, Testa S, Mozetic P et al (2017) Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo. Biomaterials 131:98–110

    Article  CAS  PubMed  Google Scholar 

  62. Addario G, Djudjaj S, Farè S et al (2020) Microfluidic bioprinting towards a renal in vitro model. Bioprinting 20

    Google Scholar 

  63. Dickman CTD, Russo V, Thain K et al (2020) Functional characterization of 3D contractile smooth muscle tissues generated using a unique microfluidic 3D bioprinting technology. FASEB J 34:1652–1664

    Article  CAS  PubMed  Google Scholar 

  64. Liu W, Zhang YS, Heinrich MA et al (2017) Rapid continuous multimaterial extrusion bioprinting. Adv Mater 29

    Google Scholar 

  65. Fang Y, Guo Y, Ji M et al (2021) 3D printing of cell-laden microgel-based biphasic bioink with heterogeneous microenvironment for biomedical applications. Adv Funct Mater:2109810

    Google Scholar 

  66. Idaszek J, Costantini M, Karlsen TA et al (2019) 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head. Biofabrication:11

    Google Scholar 

  67. Wang M, Li W, Mille LS et al (2021) Digital light processing based bioprinting with composable gradients. Adv Mater. https://doi.org/10.1002/adma.202107038

  68. Sun H, Jia Y, Dong H et al (2020) Combining additive manufacturing with microfluidics: an emerging method for developing novel organs-on-chips. Curr Opin Chem Eng 28:1–9

    Article  Google Scholar 

  69. Miri AK, Nieto D, Iglesias L et al (2018) Microfluidics-enabled multimaterial Maskless stereolithographic bioprinting. Adv Mater 30:1–9

    Google Scholar 

  70. Chandler C, Liu T, Buckanovich R, Coffman LG (2019) The double edge sword of fibrosis in cancer. Transl Res 209:55–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Park Y, Franz CK, Ryu H et al (2021) Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. Sci Adv 7

    Google Scholar 

  72. Galan EA, Zhao H, Wang X et al (2020) Intelligent microfluidics: the convergence of machine learning and microfluidics in materials science and biomedicine. Matter 3:1893–1922

    Article  Google Scholar 

  73. Hakimi O, Krallinger M, Ginebra MP (2020) Time to kick-start text mining for biomaterials. Nat Rev Mater 5:553–556

    Article  Google Scholar 

  74. Pape J, Magdeldin T, Ali M et al (2019) Cancer invasion regulates vascular complexity in a three-dimensional biomimetic model. Eur J Cancer 119:179–193

    Article  CAS  PubMed  Google Scholar 

  75. Gimondi S, Guimarães CF, Vieira SF et al (2022) Microfluidic mixing system for precise PLGA-PEG nanoparticles size control. Nanomed Nanotechnol Biol Med 40:102482

    Article  CAS  Google Scholar 

  76. Karnik R, Gu F, Basto P et al (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8:2906–2912

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

CFG acknowledges support from Fundação para a Ciência e Tecnologia (FCT), grants no. PD/BD/135253/2017 and COVID/BD/152016/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos F. Guimarães .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guimarães, C.F., Gasperini, L., Reis, R.L. (2022). Microfluidic-Driven Biofabrication and the Engineering of Cancer-Like Microenvironments. In: Caballero, D., Kundu, S.C., Reis, R.L. (eds) Microfluidics and Biosensors in Cancer Research. Advances in Experimental Medicine and Biology, vol 1379. Springer, Cham. https://doi.org/10.1007/978-3-031-04039-9_8

Download citation

Publish with us

Policies and ethics