Skip to main content

Free-Space Optical Propagation Relevant to Integrated Space/Aerial, Terrestrial, and Underwater Links

  • Chapter
  • First Online:
Laser Communication with Constellation Satellites, UAVs, HAPs and Balloons
  • 837 Accesses

Abstract

This chapter discusses the fundamental physics of space optical propagation applicable to integrated space/aerial, terrestrial, and underwater communication links. Slant-path free-space optical (FSO) communication links between an optical ground station (OGS) and the satellite at various orbits and altitudes include GEO, LEO, HAP, and small or even microsatellites, which are analyzed with appropriate accepted optical channel models and atmospheric propagation parameters. Various FSO transmitting beam shapes to optimize long-distance data transmission are discussed. FSO communication technologies for 5G networks and future 6G evolution are explained. Underwater free-space optical (uFSO) communications for POTENTIAL Global connectivity at Gbit/s data rate is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arun K. Majumdar and Jennifer C. Ricklin, Free-Space Laser Communications; Principles and Advances, Springer, New York, NY, 2008

    Google Scholar 

  2. Arun K. Majumdar, Chapter 2, Advanced Free Space Optics (FSO): A Systems Approach, Springer Science+Business Media, New York 2015.

    Book  Google Scholar 

  3. Arun K. Majumdar, Optical Wireless Communications for Broadband Global Internet Connectivity: Fundamentals and Potential Applications, Elsevier, Amsterdam, Netherlands 2019.

    Google Scholar 

  4. Larry C. Andrews and Ronald L. Phillips, Laser Beam Propagation through Random Media, Second Edition, SPIE PRESS, Bellingham, Washington 2005.

    Google Scholar 

  5. Lake A. Singh, William R. Whittecar, Marc D. DiPrinzio, Jonathan D. Herman, Matthew P. Ferringer & Patrick M. Reed, Low cost satellite constellations for nearly continuous global coverage, Nature Communications, (2020) 11:200 (2020) 11:200 | https://doi.org/10.1038/s41467-019-13865-0| www.nature.com/naturecommunications

  6. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation, Translated from Russian by Israel Program for Scientific Translations Ltd, IPST Cat. No. 5319, UDC 551.510, ISBN 0 7065 0680 4, available from the U.S. Department of Commerce, NTIS, Springfield, VA 22151 TT-68-50464, 1971.

    Google Scholar 

  7. J. W. Strohbehn, ed., Laser Beam Propagation in the Atmosphere, Springer-Verlag, Berlin, 1978.

    Google Scholar 

  8. A. M. Prokhorov, F. V. Bunkin, K. S. Gochelashvily, and V. I. Shishov, Laser Propagation in turbulent media, Proc. IEEE.63, 790-811 (21975).

    Google Scholar 

  9. D. L. Fried, Scintillation of a ground-to-space laser illuminator, J. Opt.Soc. Am 57, 980-983 (1967).

    Article  Google Scholar 

  10. P. O. Minott, Scintillation in an earth-to-space propagation path, J. Opt.Soc. Am 62, 885-888 (1972).

    Article  Google Scholar 

  11. Jennifer C. Ricklin, Stephen M Hammel, Frank D. Eaton, Sventa l. Lachinova, Atmospheric channel effects on Free-Sapce Laser Communication, Chapter2 of the Book, Arun K. Majumdar and Jennifer C. Ricklin, Free-Space Laser Communications; Principles and Advances, Springer, New York, NY, 2008.

    Google Scholar 

  12. Hemani Kaushal1 and Georges Kaddoum, Optical Communication in Space: Challenges and Mitigation Techniques, DOI https://doi.org/10.1109/COMST.2016.2603518, IEEE Communications Surveys & Tutorials, 2016.

  13. Shuhui Li and Jian Wang, Adaptive free-space optical communications through turbulence using self-healing Bessel beams, SCIENTIFIC REPORTS, 7:43233 | DOI: https://doi.org/10.1038/srep43233, 23 February 2017 www.Nature.com/scientificreports

  14. Nokwazi Mphuthi, Lucas Gailele, Igor Litvin, Angela Dudley, Roelf Botha, and Andrew Forbes, Free-space optical communication link with shape-invariant orbital angular momentum Bessel beams, Applied Optics Vol.58, Issue 16, pp.4258-4264 (2019).

    Google Scholar 

  15. PHILIP BIRCH, INIABASI ITUEN, RUPERT YOUNG, AND CHRIS CHATWIN, Long Distance Bessel Beam Propagation Through Kolmogorov Turbulence, Journal of the Optical Society of America A, September 21, 2015.

    Google Scholar 

  16. Minghao Wang1,2, Xiuhua Yuan1, Peng Deng2, Wei Yao3, Timothy Kane2, Application of Aperture Truncated Airy Beams in Free Space Optical Communications, SPACOMM 2018 : The Tenth International Conference on Advances in Satellite and Space Communications, ISBN: 978-1-61208-624-8, IARIA 2018.

    Google Scholar 

  17. Nathaniel A. Ferlic, Miranda van Iersel, Daniel A. Paulson, Christopher C. Davis, Propagation of Laguerre-Gaussian and Im Bessel beams through atmospheric turbulence: A computational study, Proceedings Volume 11506, Laser Communication and Propagation through the Atmosphere and Oceans IX; 115060H (2020) https://doi.org/10.1117/12.2567348, SPIE 22 August 2020.

  18. Ing. Peter Barcík, Doctoral Thesis, OPTIMAL INTENSITY DISTRIBUTION IN A LASER BEAM FOR FSO COMMUNICATIONS, BRNO University of Technology, 2016

    Google Scholar 

  19. Ruediger Grunwald & Martin Bock (2020) Needle beams: a review, Advances in Physics: X, 5:1, 1736950, DOI: https://doi.org/10.1080/23746149.2020.1736950, ADVANCES IN PHYSICS, Vol.5, No. 1, 1736950, Taylor & Francis, 2020.

  20. Kaiwei Wang, Lijiang Zeng, Chunyong Yin, Influence of the incident wave-front on intensity distribution of the non-diffracting beam used in large-scale measurement, Optics Communications 216 (2003) 99-103.

    Article  Google Scholar 

  21. V. Kollárová, T. Medřik, R. Čelechovský, Z. Bouchal, O. Wilfert, Z. Kolka, Application of non-diffracting beams to wireless optical communications. t: https://www.researchgate.net/publication/336453975

  22. Ömer F. Sayan a, Hamza Gerçekcioğlu a, Yahya Baykal, Hermite Gaussian beam Scintillations in weak atmospheric turbulence for aerial vehicle laser communications, Optics Communications, October 2019, DOI: https://doi.org/10.1016/j.optcom.2019.12473.

  23. Hyo-Chang Kim, Yeon H. Lee, Hermite-Gaussian and Laguerre-Gaussian beams beyond the paraxial approximation, Optics Communications, Vol. 169, Issues 1-6, Pages 9-16, 1 October 1999.

    Google Scholar 

  24. Mehmet Yuceer and Halil T. Eyyuboglu, Laguerre-Gaussian beam scintillation on slant paths, Appl. Phys. B (2012) 109:311–316 DOI https://doi.org/10.1007/s00340-012-5186-3.

    Article  Google Scholar 

  25. Stamatios V. Kartalopoulos, “Free Space Optical Networks for Ultra-Broad Band Services,” IEEE/Wiley Publication, Hoboken, New Jersey, 2011.

    Google Scholar 

  26. Y. Han Oh, J. C. Ricklin, E. Oh, S. Doss-Hammel and F. D. Eaton, “Estimating optical turbulence effects on free-space laser communication: modeling and measurements at ARL’s A_LOT facility,” SPIE Vol. 5550, 247-255 (2004).

    Google Scholar 

  27. R. W. Smith, J. C. Ricklin, K. E. Cranston and J. P. Cruncleton, “Comparison of a model describing propagation through optical turbulence (PROTURB) with field data,” SPIE Vol. 2222, 780-789 (1994).

    Google Scholar 

  28. R. E. Hufnagel, “Variations of atmospheric turbulence,” Tech. Report, 1974.

    Google Scholar 

  29. G. C. Valley, “Isoplanatic degradation of tilt correction and short-term imaging systems,” Appl. Opt., vol. 19, no. 4, pp. 574–577, February 1980.

    Google Scholar 

  30. R. R. Beland, “Propagation through atmospheric optical turbulence,” in The Infrared and Electro-Optical Systems Handbook, F. G. Smith, ed. (SPIE Opt. Eng. Press, Bellingham, 1993), Vol 2, Chap. 2.

    Google Scholar 

  31. L. C. Andrews, R. L. Phillips, R. Crabbs, D. Wayne, T. Leclerc, and P. Sauer, “Atmospheric channel characterization for ORCA testing at NTTR,” Proc. SPIE 7588 (2010).

    Google Scholar 

  32. M. G. Miller and P. L. Zieske, Turbulence environmental characterization (Rome Air Development Center, Griffiss Air Force Base, N.Y., RADC-TR-79-131, 1979).

    Google Scholar 

  33. R. R. Parenti and R. J. Sasiela, "Laser-guide-star systems for astronomical applications," J. Opt. Soc. Am. A 11(1), 288-309 (1994).

    Article  Google Scholar 

  34. A. Jurado-Navas, J. M. Garrido-Balsells, J. F. Paris, and A. Puerta-Notario, “A unifying statistical model for atmospheric optical scintillation,” arXiv preprint arXiv:1102.1915, 2011.

    Google Scholar 

  35. Hemani Kaushal, Subrat Kar and Vk Jain, Free-Space Optical Channel Models, Chapter 2, H. Kaushal et al., Free Space Optical Communication, Optical Networks, DOI https://doi.org/10.1007/978-81-322-3691-7_2, Springer (India) Pvt. Ltd. 2017, January 2017.

  36. Hassan M. Oubei, Chao Shen, Abla Kammoun, Emna Zedini, Ki-Hong Park, Xiaobin Sun, Guangyu Liu, Chun Hong Kang, Tien Khee Ng, Mohamed-Slim Alouini and Boon S. Ooi, Light based underwater wireless communications, Jpn. J. Appl. Phys. 57 08PA06, 17 July 2018.

    Google Scholar 

  37. CHAO SHEN, YUJIAN GUO, HASSAN M. OUBEI, TIEN KHEE NG, GUANGYU LIU, KI-HONG PARK, KANG-TING HO, MOHAMED-SLIM ALOUINI, AND BOON S. OOI1,* 20-meter underwater wireless optical communication link with 1.5 Gbps data rate, Optics Express, Vol. 24, No. 22 | 31 Oct 2016 | OPTICS EXPRESS 25502, 24 October 2016.

    Google Scholar 

  38. Military & Aerospace Electronics, Jan 31st. 2010. https://www.militaryaerospace.com/home/article/16723525/darpa-pushes-submarine-laser-communications-technology-for-asw-operations

  39. Nasir Saeed, Abdulkadir Celik, Tareq Y. Al-Naffouri, Mohamed-Slim Alouini, Underwater Optical Wireless Communications, Networking, and Localization: A Survey, arXiv:1803.02442v1 [cs.NI] 28 Feb 2018, May 2019, Ad Hoc Networks 94:101935, DOI: https://doi.org/10.1016/j.adhoc.2019.101935

  40. S. Q. Duntley, “Light in the sea∗,” J. Opt. Soc. Am., vol. 53, no. 2, pp. 214–233, Feb. 1963.

    Google Scholar 

  41. G.D. Gilbert, T.R. Stoner, and J.L. Jernigan, “Underwater experiments on the polarization, coherence, and scattering properties of a pulsed blue-green laser,” Proc. SPIE, vol. 0007, pp. 07 – 14, Jun. 1966.

    Google Scholar 

  42. F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt., vol. 47, no. 2, pp. 277–283, Jan. 2008.

    Google Scholar 

  43. J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express, vol. 24, no. 8, pp. 8097– 8109, Apr. 2016.

    Google Scholar 

  44. F. Hanson and M. Lasher, “Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber,” Appl. Opt., vol. 49, no. 16, pp. 3224–3230, Jun. 2010.

    Google Scholar 

  45. William C. Brown and Arun K. Majumdar, Point-spread function associated with underwater imaging through a wavy air-water interface: theory and laboratory tank experiment, APPLIED OPTICS, Vol. 31, No. 36, 20 December 1992.

    Google Scholar 

  46. Arun K. Majumdar, John Siegenthaler, Phillip Land, "Analysis of optical communications through the random air-water interface: feasibility for underwater communications," Proc. SPIE 8517, Laser Communication and Propagation through the Atmosphere and Oceans, 85170T (24 October 2012); doi: https://doi.org/10.1117/12.928999.

  47. Chadi GABRIEL, Mohammad-Ali KHALIGHI, Salah BOURENNANE, Pierre LEON, Vincent RIGAUD, Channel Modeling for Underwater Optical Communication, Conferences, 2011 IEEE GLOBECOM Workshops, DOI:https://doi.org/10.1109/GLOCOMW.2011.6162571. Corpus ID: 206692769

  48. Italo Toselli and Olga Korotkova, General scale-dependent anisotropic turbulence and its impact on free space optical communication system performance, JOSA A, Vol. 32, No. 6, pp. 1017-1025/June 2015.

    Google Scholar 

  49. Phillip Land and Arun K. Majumdar, Demonstration of Adaptive Optics for mitigating laser propagation through a random air-water interface, Proc. SPIE, Volume 9827, Ocean Sensing and Monitoring VIII: 982703, 17 May 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majumdar, A.K. (2022). Free-Space Optical Propagation Relevant to Integrated Space/Aerial, Terrestrial, and Underwater Links. In: Laser Communication with Constellation Satellites, UAVs, HAPs and Balloons. Springer, Cham. https://doi.org/10.1007/978-3-031-03972-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-03972-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-03971-3

  • Online ISBN: 978-3-031-03972-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics