Skip to main content

Abstract

Image segmentation is considered one of the most difficult challenges in image processing. Recently many advanced applications have emerged in this field. Color images provide more information and more reliable in segmentation than grayscale images. In this paper, the color spaces RGB, YCbCr, XYZ, and HSV are compared using four different methods of image segmentation. These methods are k-means, Fuzzy C-means, Region growing, and Graph Cut. The main objective of image segmentation is to simplify and change the image to something more meaningful and easier to analyze. In this study, we used single-color space components. In addition to this, we vote between the three components of every color space in the segmented image to get the best image segmentation result. Different RGB color images from Berkeley databases are used. The accuracy of the image segmentation is measured using the peak signal-to-noise ratio (PSNR) and mean square error (MSE). The experimental results show that the voting between color components achieved good segmentation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jeevitha, K., Iyswariya, A., RamKumar, V., Basha, S.M., Kumar, V.P.: A review on various segmentation techniques in image processing. Eur. J. Mol. Clin. Med. 7(4), 1342–1348 (2020)

    Google Scholar 

  2. Manoharan, S.: Performance analysis of clustering based image segmentation techniques. J. Innov. Image Process. (JIIP) 2(01), 14–24 (2020)

    Article  Google Scholar 

  3. Zheng, X., Lei, Q., Yao, R., Gong, Y., Yin, Q.: Image segmentation based on adaptive K-means algorithm. EURASIP J. Image Video Process. 1, 1–10 (2018)

    Google Scholar 

  4. Bora, D.J., Gupta, A., Khan, F.A.: Comparing the performance of L*A*B* and HSV color spaces with respect to color image segmentation. Int. J. Emerg. Technol. Adv. Eng. 5(2) (2015)

    Google Scholar 

  5. Agrawal, S., Xaxa, D.K.: Survey on image segmentation techniques and color models. Int. J. Comput. Sci. Inf. Technol. 5(3), 3025–3030 (2014)

    Google Scholar 

  6. Zaldivar, D., Cuevas, E., Perez, M.A.: Color spaces advantages and disadvantages in image color clustering segmentation. In: Hassanien, A., Oliva, D. (eds.) Advances in Soft Computing and Machine Learning in Image Processing. SCI, vol. 730, pp. 3–22. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63754-9_1

  7. Zaitoun, N.M., Aqel, M.J.: Survey on image segmentation. Techniques 65, 797–806 (2015)

    Google Scholar 

  8. Singh, K.K.: A study of image segmentation algorithms for different types of images. Int. J. Comput. Sci. Issues (IJCSI) 7(5), 414 (2010)

    Google Scholar 

  9. Garcia-Lamont, F., Cervantes, J., López, A., Rodriguez, L.: Segmentation of images by color features a survey. Neurocomputing 292, 1–27 (2018)

    Article  Google Scholar 

  10. Jurio, A., Pagola, M., Galar, M., Lopez-Molina, C., Paternain, D.: A comparison study of different color spaces in clustering based image segmentation. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications. IPMU 2010. CCIS, vol. 81, pp. 532–541. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14058-7_55

  11. Burney, S.A., Tariq, H.: K-means cluster analysis for image segmentation. Int. J. Comput. Appl. 96(4), 1–8 (2014)

    Google Scholar 

  12. Khattab, D., Ebied, H.M., Hussein, A.S., Tolba, M.F.: Color image segmentation based on different color space models using automatic grab cut. Sci. World J. (2014)

    Google Scholar 

  13. Mythili, C., Kavitha, V.: Color image segmentation using ERKFCM. Int. J. Comput. Appl. 41, 21–28 (2012)

    Google Scholar 

  14. Shih, F.Y., Cheng, S.: Automatic seeded region growing for color image segmentation. Image Vis. Comput. 23(10), 877–886 (2005)

    Article  Google Scholar 

  15. Wang, X., Hänsch, R., Ma, L., Hellwich, O.: Comparison of different color spaces for image segmentation using graph-cut. In: International Conference on Computer Vision Theory and Applications (VISAPP), pp. 301–308. IEEE (2014)

    Google Scholar 

  16. Busin, L., Vandenbroucke, N., Macaire, L.: Advances in imaging and electron physics. 151, 65–168 (2008)

    Google Scholar 

  17. Pm, N., Chezian, R.: Various colour spaces and colour space conversion algorithms. J. Glob. Res. Comput. Sci. 4, 44–48 (2013)

    Google Scholar 

  18. Gopinathan, S., Gayathri, M.S.: A study on image enhancement techniques using YCbCr color space methods. Int. J. Adv. Eng. Res. Sci. 3(8), 236818 (2016)

    Google Scholar 

  19. Ibraheem, N.A., Hasan, M.M., Khan, R.Z., Mishra, P.K.: Understanding color models: a review. ARPN J. Sci. Technol. 2(3), 265–275 (2012)

    Google Scholar 

  20. Plataniotis, K., Anastasios, N.: Venetsanopoulos, Color image Processing and Applications. Springer Science & Business Media, Heidelberg (2013)

    Google Scholar 

  21. Jipkate, B.R., Gohokar, V.V.: A comparative analysis of fuzzy c-means clustering and k means clustering algorithms. Int. J. Comput. Eng. Res. 2(3), 737–739 (2012)

    Google Scholar 

  22. Dhanachandra, N., Chanu, Y.J.: Image segmentation method using k-means clustering algorithm for color image. Adv. Res. Electr. Electron. Eng. 2(11), 68–72 (2015)

    Google Scholar 

  23. Li, X., Lu, X., Tian, J., Gao, P., Kong, H., Xu, G.: Application of fuzzy c-means clustering in data analysis of metabolomics. Anal. Chem. 81(11), 4468–4475 (2009)

    Article  Google Scholar 

  24. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  25. Ganesan, P., Rajini, V., Sathish, B.S., Kalist, V., Basha, S.K.: Satellite image segmentation based on YCbCr color space. Indian J. Sci. Technol. 8(1), 35 (2015)

    Article  Google Scholar 

  26. Hore, S., et al.: An integrated interactive technique for image segmentation using stack based seeded region growing and thresholdin. Int. J. Electr. Comput. Eng. 6(6), 2088–8708 (2016)

    Google Scholar 

  27. Boykov, Y., Veksler, O.: Graph cuts in vision and graphics: theories and applications. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 79–96. Springer, Boston, MA (2006). https://doi.org/10.1007/0-387-28831-7_5

  28. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  29. Zheng, Q., Li, W., Hu, W., Wu, G.: An interactive image segmentation algorithm based on graph cut. Procedia Eng. 29, 1420–1424 (2012)

    Article  Google Scholar 

  30. Martin, D.R., Fowlkes, C.C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2, no. 2, pp. 416–423 (2001)

    Google Scholar 

  31. Prabha, D.S., Kumar, J.S.: Performance evaluation of image segmentation using objective methods. Indian J. Sci. Technol. 9(8), 1–8 (2016)

    Article  Google Scholar 

  32. Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009)

    Article  Google Scholar 

  33. Moreno, J., Jaime, B., Saucedo, S.: Towards no-reference of peak signal to noise ratio. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 4(1) (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dena A. Abdelsadek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdelsadek, D.A., Al-Berry, M.N., Ebied, H.M., Hassaan, M. (2022). Impact of Using Different Color Spaces on the Image Segmentation. In: Hassanien, A.E., Rizk, R.Y., Snášel, V., Abdel-Kader, R.F. (eds) The 8th International Conference on Advanced Machine Learning and Technologies and Applications (AMLTA2022). AMLTA 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-031-03918-8_39

Download citation

Publish with us

Policies and ethics