Abstract
Image segmentation is considered one of the most difficult challenges in image processing. Recently many advanced applications have emerged in this field. Color images provide more information and more reliable in segmentation than grayscale images. In this paper, the color spaces RGB, YCbCr, XYZ, and HSV are compared using four different methods of image segmentation. These methods are k-means, Fuzzy C-means, Region growing, and Graph Cut. The main objective of image segmentation is to simplify and change the image to something more meaningful and easier to analyze. In this study, we used single-color space components. In addition to this, we vote between the three components of every color space in the segmented image to get the best image segmentation result. Different RGB color images from Berkeley databases are used. The accuracy of the image segmentation is measured using the peak signal-to-noise ratio (PSNR) and mean square error (MSE). The experimental results show that the voting between color components achieved good segmentation accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Jeevitha, K., Iyswariya, A., RamKumar, V., Basha, S.M., Kumar, V.P.: A review on various segmentation techniques in image processing. Eur. J. Mol. Clin. Med. 7(4), 1342–1348 (2020)
Manoharan, S.: Performance analysis of clustering based image segmentation techniques. J. Innov. Image Process. (JIIP) 2(01), 14–24 (2020)
Zheng, X., Lei, Q., Yao, R., Gong, Y., Yin, Q.: Image segmentation based on adaptive K-means algorithm. EURASIP J. Image Video Process. 1, 1–10 (2018)
Bora, D.J., Gupta, A., Khan, F.A.: Comparing the performance of L*A*B* and HSV color spaces with respect to color image segmentation. Int. J. Emerg. Technol. Adv. Eng. 5(2) (2015)
Agrawal, S., Xaxa, D.K.: Survey on image segmentation techniques and color models. Int. J. Comput. Sci. Inf. Technol. 5(3), 3025–3030 (2014)
Zaldivar, D., Cuevas, E., Perez, M.A.: Color spaces advantages and disadvantages in image color clustering segmentation. In: Hassanien, A., Oliva, D. (eds.) Advances in Soft Computing and Machine Learning in Image Processing. SCI, vol. 730, pp. 3–22. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63754-9_1
Zaitoun, N.M., Aqel, M.J.: Survey on image segmentation. Techniques 65, 797–806 (2015)
Singh, K.K.: A study of image segmentation algorithms for different types of images. Int. J. Comput. Sci. Issues (IJCSI) 7(5), 414 (2010)
Garcia-Lamont, F., Cervantes, J., López, A., Rodriguez, L.: Segmentation of images by color features a survey. Neurocomputing 292, 1–27 (2018)
Jurio, A., Pagola, M., Galar, M., Lopez-Molina, C., Paternain, D.: A comparison study of different color spaces in clustering based image segmentation. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications. IPMU 2010. CCIS, vol. 81, pp. 532–541. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14058-7_55
Burney, S.A., Tariq, H.: K-means cluster analysis for image segmentation. Int. J. Comput. Appl. 96(4), 1–8 (2014)
Khattab, D., Ebied, H.M., Hussein, A.S., Tolba, M.F.: Color image segmentation based on different color space models using automatic grab cut. Sci. World J. (2014)
Mythili, C., Kavitha, V.: Color image segmentation using ERKFCM. Int. J. Comput. Appl. 41, 21–28 (2012)
Shih, F.Y., Cheng, S.: Automatic seeded region growing for color image segmentation. Image Vis. Comput. 23(10), 877–886 (2005)
Wang, X., Hänsch, R., Ma, L., Hellwich, O.: Comparison of different color spaces for image segmentation using graph-cut. In: International Conference on Computer Vision Theory and Applications (VISAPP), pp. 301–308. IEEE (2014)
Busin, L., Vandenbroucke, N., Macaire, L.: Advances in imaging and electron physics. 151, 65–168 (2008)
Pm, N., Chezian, R.: Various colour spaces and colour space conversion algorithms. J. Glob. Res. Comput. Sci. 4, 44–48 (2013)
Gopinathan, S., Gayathri, M.S.: A study on image enhancement techniques using YCbCr color space methods. Int. J. Adv. Eng. Res. Sci. 3(8), 236818 (2016)
Ibraheem, N.A., Hasan, M.M., Khan, R.Z., Mishra, P.K.: Understanding color models: a review. ARPN J. Sci. Technol. 2(3), 265–275 (2012)
Plataniotis, K., Anastasios, N.: Venetsanopoulos, Color image Processing and Applications. Springer Science & Business Media, Heidelberg (2013)
Jipkate, B.R., Gohokar, V.V.: A comparative analysis of fuzzy c-means clustering and k means clustering algorithms. Int. J. Comput. Eng. Res. 2(3), 737–739 (2012)
Dhanachandra, N., Chanu, Y.J.: Image segmentation method using k-means clustering algorithm for color image. Adv. Res. Electr. Electron. Eng. 2(11), 68–72 (2015)
Li, X., Lu, X., Tian, J., Gao, P., Kong, H., Xu, G.: Application of fuzzy c-means clustering in data analysis of metabolomics. Anal. Chem. 81(11), 4468–4475 (2009)
Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)
Ganesan, P., Rajini, V., Sathish, B.S., Kalist, V., Basha, S.K.: Satellite image segmentation based on YCbCr color space. Indian J. Sci. Technol. 8(1), 35 (2015)
Hore, S., et al.: An integrated interactive technique for image segmentation using stack based seeded region growing and thresholdin. Int. J. Electr. Comput. Eng. 6(6), 2088–8708 (2016)
Boykov, Y., Veksler, O.: Graph cuts in vision and graphics: theories and applications. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 79–96. Springer, Boston, MA (2006). https://doi.org/10.1007/0-387-28831-7_5
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)
Zheng, Q., Li, W., Hu, W., Wu, G.: An interactive image segmentation algorithm based on graph cut. Procedia Eng. 29, 1420–1424 (2012)
Martin, D.R., Fowlkes, C.C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2, no. 2, pp. 416–423 (2001)
Prabha, D.S., Kumar, J.S.: Performance evaluation of image segmentation using objective methods. Indian J. Sci. Technol. 9(8), 1–8 (2016)
Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009)
Moreno, J., Jaime, B., Saucedo, S.: Towards no-reference of peak signal to noise ratio. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 4(1) (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Abdelsadek, D.A., Al-Berry, M.N., Ebied, H.M., Hassaan, M. (2022). Impact of Using Different Color Spaces on the Image Segmentation. In: Hassanien, A.E., Rizk, R.Y., Snášel, V., Abdel-Kader, R.F. (eds) The 8th International Conference on Advanced Machine Learning and Technologies and Applications (AMLTA2022). AMLTA 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-031-03918-8_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-03918-8_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-03917-1
Online ISBN: 978-3-031-03918-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)