Skip to main content

Implementation of an UVC Lights Desinfection System for a Differential Robot Applying Security Methods in Indoor

  • Conference paper
  • First Online:
  • 606 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1535))

Abstract

Implementing methods that allow trajectory tracing for an autonomous robotic system is a topic that covers several fields of study since different parameters must be taken into account to locate obstacles to ensure proper navigation in environments where there is a moderate traffic of people. For this purpose, different methods of trajectory tracing will be implemented, which take as a reference the distance at which people are located. In addition, there are added human image recognition for avoid exposing people to UVC light. As a result, it can be observed that the methods implemented for the trajectory tracing give quite acceptable “pathing” results, since the main criterion to determine the efficiency is the SII, and thanks to the T265 and D435i sensors, it was possible to determine the presence of people in terms of image processing.

CIDIS-ESPOL.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Autonomous Mobile Robot.

  2. 2.

    Ultraviolet C.

  3. 3.

    Social Forces Model.

  4. 4.

    Social Individual Index.

  5. 5.

    http://wiki.ros.org/leg_detector.

  6. 6.

    http://wiki.ros.org/darknet_ros.

  7. 7.

    https://wiki.ros.org/global_planner.

References

  1. Position statement on germicidal UV-C irradiation. Technical report, Global Light Association, May 2020

    Google Scholar 

  2. Borenstein, J., Koren, Y.: Real-time obstacle avoidance for fast mobile robots in cluttered environments. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 572–577 (1990). https://doi.org/10.1109/ROBOT.1990.126042

  3. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 4(1), 23–33 (1997). https://doi.org/10.1109/100.580977

    Article  Google Scholar 

  4. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995). https://doi.org/10.1103/PhysRevE.51.4282

    Article  Google Scholar 

  5. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995). https://doi.org/10.1103/PhysRevE.51.4282, https://link.aps.org/doi/10.1103/PhysRevE.51.4282

  6. Space environment (natural and artificial) - process for determining solar irradiances. Standard, International Organization for Standardization, Geneva, CH, May 2007

    Google Scholar 

  7. Khamis, A.M., Rodríguez, F.J., Salichs, M.A.: Remote interaction with mobile robots. Auton. Robot. 15(3), 267–281 (2003). https://doi.org/10.1023/A:1026268504593

    Article  Google Scholar 

  8. Kim, N., Hong, S.T., Sung, K.Y., Yu, G.E., Seo, J.H.: A case study on risk assessment for personal care robot (mobile servant robot). In: 2018 18th International Conference on Control, Automation and Systems (ICCAS), pp. 343–347 (2018)

    Google Scholar 

  9. Kivrak, H., Cakmak, F., Kose, H., Yavuz, S.: Social navigation framework for assistive robots in human inhabited unknown environments. Eng. Sci. Technol. Int. J. 24(2), 284–298 (2021). https://doi.org/10.1016/j.jestch.2020.08.008, https://www.sciencedirect.com/science/article/pii/S2215098620308727

  10. Reddy, A.K., Malviya, V., Kala, R.: Social cues in the autonomous navigation of indoor mobile robots. Int. J. Soc. Robot. 13(6), 1335–1358 (2020). https://doi.org/10.1007/s12369-020-00721-1

    Article  Google Scholar 

  11. Leichtmann, B., Nitsch, V.: How much distance do humans keep toward robots? Literature review, meta-analysis, and theoretical considerations on personal space in human-robot interaction. J. Environ. Psychol. 68, 101386 (2020).https://doi.org/10.1016/j.jenvp.2019.101386, https://www.sciencedirect.com/science/article/pii/S0272494419303846

  12. Marais, G., Naidoo, M., Hsiao, N.Y., Valley-Omar, Z., Smuts, H., Hardie, D.: The implementation of a rapid sample preparation method for the detection of SARS-COV-2 in a diagnostic laboratory in south Africa. PLOS ONE 15, 1–9 (10 2020). https://doi.org/10.1371/journal.pone.0241029

  13. Sezer, V., Gokasan, M.: A novel obstacle avoidance algorithm: “follow the gap method”. Robot. Auton. Syst. 60(9), 1123–1134 (2012). https://doi.org/10.1016/j.robot.2012.05.021, https://www.sciencedirect.com/science/article/pii/S0921889012000838

  14. Silva, S., Paillacho, D., León, D., Pintado, M., Paillacho, J.: Autonomous Intelligent Navigation for Mobile Robots in Closed Environments, pp. 391–402, April 2021. https://doi.org/10.1007/978-3-030-71503-8_30

  15. Tao, M., et al.: Sterilization and disinfection methods for decellularized matrix materials: review, consideration and proposal. Bioactive Mater. 6(9), 2927–2945 (2021). https://doi.org/10.1016/j.bioactmat.2021.02.010, https://www.sciencedirect.com/science/article/pii/S2452199X21000700

  16. Truong, X.T., Ngo, T.D.: Toward socially aware robot navigation in dynamic and crowded environments: a proactive social motion model. IEEE Trans. Autom. Sci. Eng. 14(4), 1743–1760 (2017). https://doi.org/10.1109/TASE.2017.2731371

    Article  Google Scholar 

  17. Wang, X.V., Wang, L.: A literature survey of the robotic technologies during the COVID-19 pandemic. J. Manuf. Syst. (2021). https://doi.org/10.1016/j.jmsy.2021.02.005, https://www.sciencedirect.com/science/article/pii/S0278612521000339

  18. Yu, G.E., Hong, S.T., Sung, K.Y., Seo, J.H.: A study on the risk investigation and safety of personal care robots. In: 2017 17th International Conference on Control, Automation and Systems (ICCAS), pp. 904–908 (2017). https://doi.org/10.23919/ICCAS.2017.8204353

  19. Zhou, K., Liu, T., Zhou, L.: Industry 4.0: towards future industrial opportunities and challenges. In: 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 2147–2152. IEEE (2015). https://doi.org/10.1109/FSKD.2015.7382284

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennys Paillacho Chiluiza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Velez Burgos, R., Ruiz, A.P., Mendoza, S.S., Paillacho Chiluiza, D., Paillacho Corredores, J. (2022). Implementation of an UVC Lights Desinfection System for a Differential Robot Applying Security Methods in Indoor. In: Botto-Tobar, M., Montes León, S., Torres-Carrión, P., Zambrano Vizuete, M., Durakovic, B. (eds) Applied Technologies. ICAT 2021. Communications in Computer and Information Science, vol 1535. Springer, Cham. https://doi.org/10.1007/978-3-031-03884-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-03884-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-03883-9

  • Online ISBN: 978-3-031-03884-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics