Skip to main content

Optimization Processes of Biodiesel Production from Pig and Neem (Azadirachta indica A. Juss) Seeds Blend Oil Using Alternative Catalysts from Waste Biomass

  • Chapter
  • First Online:
Waste Treatment in the Biotechnology, Agricultural and Food Industries

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 26))

Abstract

This study tested the suitability of solid residue (CaO) derived from the mixture of waste biomass as catalysts in transesterification conversion of the blend of neem oilseed (Azadirachta indica A. Juss) with rendered pig fat. Blending was done in the ratio of neem oil:pig fat oil (v/v) as 10:90 (NO10), 20:80 (NO20), 30:70 (NO30), 40:60 (NO40), 50:50 (NO50), 60:40 (NO60), 70:30 (NO70), 80:20 (NO80), and 90:10 (NO90), respectively. Optimization of transesterification process parameters of methanolysis of CaO catalyst for the synthesis of 60:40 of mixed oil biodiesel (MOB) was carried out using central composite design that generates 30 experimental runs.

Results showed low viscous oil at blend of 60:40. The predicted MOB yield of 98.05 (wt. %) at catalyst amount of 2.179 (g), reaction time of 57.45 min, reaction temperature of 59.91 °C, and MeOH/OMR of 5.9:1 (mL/mL) was validated in triplicate, and an average MOB yield of 98.03 (wt. %) was obtained. Results of XRD analysis indicated CaO as the predominant constituent element obtained from the mixture of calcined palm kernel shell husk (CPKSH) and calcined fermented kola nut husk (CFKNH). The qualities of MOB produced were within the biodiesel standard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Habibullah, M., Masjuki, H. H., Kalam, M. A., Ashrafur, R. S. M., Mofijur, M., Mobarak, H. M., & Ashraful, A. M. (2015). Potential of biodiesels as a renewable energy source in Bangladesh. Renewable and Sustainable Energy Reviews, 50, 819–834. https://doi.org/10.1016/j.rser2015.04.149

    Article  CAS  Google Scholar 

  2. Fischer, G., Hizsnyik, E., Prieler, S., Shah, M., & Van Velthuizen, H. (2009). Biofuels and food security. A study by OPEC Fund for International Development (OFID) and International Institute for Applied Systems Analysis (IIASA), Laxenburg.

    Google Scholar 

  3. Simeon, P. S., Joaquim, E. A., Seabra, M. L., & Horta, A. N. (2018). Feedstocks for biodiesel production: Brazilian and global perspectives. Biofuels, 9(4), 455–478.

    Article  Google Scholar 

  4. Retrieved November 29, 2019, from Biofuel.org.uk/asia.

  5. ETIP. (2019). European technology and innovation platform.

    Google Scholar 

  6. Ejikeme, P. M., Anyaogu, I. D., Egbuonu, C. A. C., & Eze, V. C. (2013). Pig-fat (Lard) derivatives as alternative diesel fuel in compression ignition engines. Journal of Petroleum Technology and Alternative Fuel, 4(1), 7–11. https://doi.org/10.5897/JPTAF10.001

    Article  CAS  Google Scholar 

  7. Chinyere, B. E., Callistus, N. U., & Okechuckwu, D. O. (2017). Optimization of the methanolysis of lard oil in the production of biodiesel with response surface methodology. Egyptian Journal of Petroleum, 26, 1001–1011. https://doi.org/10.1016/j.ejpe.2016.12.004

    Article  Google Scholar 

  8. Chung, K. H., Kim, J., & Lee, K. Y. (2009). Biodiesel production by transesterification of Duck Tallow with methanol on alkali catalysts. Biomass and Bioenergy, 33(1), 155–158.

    Article  CAS  Google Scholar 

  9. Anildo, C., Jr., Vivian, F., De Pra, M. C., Martha, M. H., Paulo, G. A., & Arlei, C. (2013). Synthesis and characterization of ethylic biodiesel from animal fat wastes. Fuel, 105, 228–234. https://doi.org/10.1016/j.fuel.2012.06.020

    Article  CAS  Google Scholar 

  10. Vivian, F., Anildo, C., Jr., Marina, C. D., Paulo, G., Jonas, I., Martha, M., Mauro, S., & Arlei, C. (2011). Animal fat wastes for biodiesel production. Biodiesel-feedstocks and processing technologies. https://doi.org/10.5772/26691

    Book  Google Scholar 

  11. Jishy, K. J., & Sankar, S. (2016). Production of biodiesel from chicken fat, pork fat and combination of the two feed stocks. International Journal of Research in Mechanical Engineering, 4(3), 110–114.

    Google Scholar 

  12. Joana, M. D., Conceicao, A. F., & Manuel, F. A. (2008). Using mixtures of waste frying oil and pork lard to produce biodiesel. World Academy of Science, Engineering and Technology, 44, 258262.

    Google Scholar 

  13. Encinar, J. M., Sanchez, N., & Martinez, L. G. (2011). Study of biodiesel production from animal fats with high free fatty acid content. Bioresource Technology, 102(23), 10907–10914. https://doi.org/10.1016/j.biortech.2011.09.068

    Article  CAS  Google Scholar 

  14. Adepoju, T. F., & Olawale, O. (2015). Optimization and predictive capability of RSM using controllable variables in Azadiracha indica oilseeds extraction process. International Journal of Chemistry and Materials Research, 3(1), 1–10.

    Article  Google Scholar 

  15. Bhaskara, M. V., Pramoda, S. J., Jeevika, M. U., Chandana, P. K., & Shetteppa, G. (2010). Letter: MR imaging findings neem oil poisoning. America Journal of Neuroradiology, 31, 60–61.

    Article  Google Scholar 

  16. Yash, R. C., & Gupta, P. K. (2000). Neem-seed oil inhibits growth of termite surface tunnel. Indian Journal of Toxicology, 7, 49–50.

    Google Scholar 

  17. Falowo, O. A., Oloko-Oba, M. I., & Betiku, E. (2019). Biodiesel production intensification via microwave irradiation-assisted transesterification of oil blend using nanoparticles from elephant-ear tree POd husk as a base heterogeneous catalyst. Chemical Engineering and Processing-Process Intensification, 140, 157–170.

    Article  CAS  Google Scholar 

  18. Khalil, I., Aziz, A. R. A., Yusup, S., Heikal, M., & El-Adawy, M. (2017). Response surface methodology for the optimization of the production of rubber seed/palm oil biodiesel, IDI diesel engine performance, and emissions. Biomass Conversion and Biorefinery, 7, 37–49.

    Article  CAS  Google Scholar 

  19. Milano, J., Ong, H. C., Masjuki, H., Silitonga, A., Chen, W.-H., Kusumo, F., Dharma, S., & Sebayang, A. (2018). Optimization of biodiesel production by microwave irradiationassisted transesterification for waste cooking oil-Calophyllum inophyllum oil via response surface methodology. Energy Conversion and Management, 158, 400–415.

    Article  CAS  Google Scholar 

  20. Qiu, F., Li, Y., Yang, D., Li, X., & Sun, P. (2011). Biodiesel production from mixed soybean oil and rapeseed oil. Applied Energy, 88, 2050–2055.

    Article  CAS  Google Scholar 

  21. Balajii, M., & Niju, S. (2020). Banana peduncle–A green and renewable heterogeneous base catalyst for biodiesel production from Ceiba pentandra oil. Renewable Energy, 146, 2255–2269.

    Article  CAS  Google Scholar 

  22. Gohain, M., Laskar, K., Paul, A.K., Daimary, N., Maharana, M., Goswami, I.K., Hazarika, A., Bora, U., Deka, D. (2020). Carica papaya stem: A source of versatile heterogeneous catalyst for biodiesel production and C–C bond formation. Renewable Energy, 147, 541–555.

    Google Scholar 

  23. Nath, B., Das, B., Kalita, P., & Basumatary, S. (2019). Waste to value addition: Utilization of waste Brassica nigra plant derived novel green heterogeneous base catalyst for effective synthesis of biodiesel. Journal of Clean Products, 239, 118112.

    Article  CAS  Google Scholar 

  24. Mendonça, I. M., Machado, F. L., Silva, C. C., Junior, S. D., Takeno, M. L., de Sousa Maia, P. J., Manzato, L., & de Freitas, F. A. (2019). Application of calcined waste cupuaçu (Theobroma grandiflorum) seeds as a low-cost solid catalyst in soybean oil ethanolysis: Statistical optimization. Energy Conversion and Management, 200, 112095.

    Article  Google Scholar 

  25. Alireza, B., Milan, D. K., Olivera, S. S., Vlada, B. V., & Gordon, M. (2015). A calcium oxide-based catalyst derived from palm kernel shell gasification residue for biodiesel production. Fuel, 150, 519–525.

    Article  Google Scholar 

  26. Fabunmi, B., & Arotupin, D. (2015). Proximate, mineral and antinutritional composition of fermented slimy kolanut (cola verticillata) husk and white shell. Current Journal of Applied Science and Technology, 6(5), 550–556.

    Google Scholar 

  27. Betiku, E., Samuel, S. O., Sheriff, O. A., & Olatunde, S. O. (2015). Performance evaluation of artificial neural network coupled with genetic algorithm and response surface methodology in modeling and optimization of biodiesel production process parameters from shea tree (Vitellaria paradoxa) nut butter. Renewable Energy, 76, 406–417.

    Article  Google Scholar 

  28. AOAC-Association of official Analytical Chemists. (1990). International official methods of analysis (16th ed.). AOAC.

    Google Scholar 

  29. AOAC - Official methods of analyses of the Association of Official Analytical Chemists. (1997).

    Google Scholar 

  30. Adepoju, T. F., Rasheed, B., Olatunji, M. O., Ibeh, M. A., Ademiluyi, F. T., & Olatunnbosun, B. E. (2018a). Modeling and optimization of lucky nut seed by pearl spar catalysed transesterification. Heliyon, 4, e00798.

    Article  CAS  Google Scholar 

  31. Kostic, M. D., Ana, V. V., Natasa, M. J., Olivera, S. S., & Vlada, B. V. (2016). Optimization and kinetic modeling of esterification of the oil obtained from waste plum stones as a pretreatment step in biodiesel production. Waste Management, 46, 619–629. https://doi.org/10.1016/j.wasman.2015.11.052

    Article  CAS  Google Scholar 

  32. Alba-Rubio, A. C., Alonso, C. M. L., Albuquerque, M. C. G., Mariscal, R., Cavalcante, C. L., Jr., & Lopez, G. M. (2012). A new and efficient procedure for removing calcium soaps in biodiesel obtained by using CaO as a heterogeneous catalyst. Fuel, 95, 464–470.

    Article  CAS  Google Scholar 

  33. ASTM D2015. Standard test method for gross calorific value of oil, water, coal and coke by the adiabatic bomb calorimeter from SAI Global.

    Google Scholar 

  34. Alomair, O., Jumaa, M., Alkoriem, A., & Hamed, M. (2015). Heavy oil vicocity and density prediction at normal and elevated temperatures. Journal of Petroleum Exploration and Production Technology, 6(2), 253–263.

    Article  Google Scholar 

  35. Meher, L. C., Vidya Sagar, D., & Naik, S. N. (2006). Technical aspects of biodiesel production by transesterification—A review. Renewable and Sustainable Energy Reviews, 10, 248–268.

    Article  CAS  Google Scholar 

  36. Anyaogu, I. D., Egbuonu, C. A. C., Ejikeme, P. M., & Eze, V. C. (2012). Pig fat (Lard) derivatives as alternative diesel fuel in compression ignition engines. Nanoscience and Nanotechnology Research, 4(1), 17–24. https://doi.org/10.5897/JPTAF10.001

    Article  CAS  Google Scholar 

  37. Ekpa, O. D., & Ekpa, U. J. (1996). Comparison of characteristics parameters and deterioration properties of oils from the fenera and dura variety of the oil palm. Nigeria Journal of Chemical research, 1, 26–33.

    Google Scholar 

  38. Labiano, F. G., Abad, A., de Diego, L. F., Gayan, P., & Adanez, J. (2002). Calcination of calcium-based sorbents as pressure in a broad range of CO2 concentrations. Chemical Engineering Science, 57, 2381–2393.

    Article  Google Scholar 

  39. Helwania, Z., Othman, M. R., Aziz, N., Fernando, W. J. N., & Kim, J. (2009). Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Processing Technology, 90, 1502–1514.

    Article  Google Scholar 

  40. Adepoju, T. F., Udoetuk, E. N., Olatunnbosun, B. E., Ibeh, M. A., & Rasheed, B. (2018b). Evaluation of the effectiveness of the optimization procedure with methanolysis of waste oil as a case study. South Africa Journal of Chemical Engineering, 25, 169–175.

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the effort of Bassey Gauis, Udoma William, and Mrs. Florence of Department of Chemical Engineering, Akwa Ibom State University.

Funding: This work receives no fund from University, Private organization, or Government body.

Conflict of interest: Authors declare no conflict of interest whatsoever.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Tse Hung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adepoju, T.F., Hung, YT. (2022). Optimization Processes of Biodiesel Production from Pig and Neem (Azadirachta indica A. Juss) Seeds Blend Oil Using Alternative Catalysts from Waste Biomass. In: Wang, L.K., Wang, MH.S., Hung, YT. (eds) Waste Treatment in the Biotechnology, Agricultural and Food Industries. Handbook of Environmental Engineering, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-031-03591-3_8

Download citation

Publish with us

Policies and ethics