Skip to main content

Production and Applications of Crude Polyhydroxyalkanoate-Containing Bioplastic from the Agricultural and Food-Processing Wastes

  • Chapter
  • First Online:
Waste Treatment in the Biotechnology, Agricultural and Food Industries

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 26))

  • 451 Accesses

Abstract

The nondegradable petrochemical plastics are accumulated in the environment at an annual rate of about 25 million tons. Therefore, there are considerable economic and environmental interests in the development of biodegradable plastic polyhydroxyalkanoates (PHAs) produced by bacteria. However, the cost of this bioplastic, produced by conventional technologies, is several times higher than the cost of petrochemical-based plastics. The suitable ways for the reduction of the bioplastic production costs are as follows: (1) use of cheap raw materials such as organic wastes, (2) low-cost biotechnologies, and (3) production of crude bioplastic for specific applications. The following options for raw materials, biotechnologies, and applications of crude bioplastic are suitable: (1) use of food-processing or agricultural wastes for bioplastic production; (2) batch or continuous non-aseptic cultivation for the biosynthesis of bioplastic by mixed bacterial culture; (3) concentration and extraction of bioplastic using chemical treatment, filtration, centrifugation, and flotation for the production of crude bioplastic; and (4) applications of crude (not extracted) biodegraded bioplastic in the construction industry and agriculture. The implementation of these findings in the manufacturing process of PHA-containing bioplastic would significantly reduce production costs, thereby rendering PHA-containing bioplastic an economically viable and environmentally friendly alternative to petrochemical-based plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. USEPA. (2011). Municipal solid waste generation, recycling, and disposal in the United States: Facts and figures for 2010. Retrieved from www.epa.gov/epawaste/nonhaz/municipal/pubs/2010_MSW_Tables_and_Figures_508.

  2. Lowell, W. L., & Rohwedder, W. K. (1974). Poly-beta-hydroxyalkanoate from activated sludge. Environmental Science and Technology, 8, 576–579.

    Article  Google Scholar 

  3. Braunegg, G., Lefebvre, G., & Genser, K. F. (1998). Polyhydroxyalkanoates, biopolyesters from renewable resources: Physiological and engineering aspects. Journal of Biotechnology, 65, 127–161.

    Article  CAS  Google Scholar 

  4. Castilho, L. R., Mitchell, D. A., & Freire, D. M. G. (2009). Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresource Technology, 100, 5996–6009.

    Article  CAS  Google Scholar 

  5. Steinbuchel, A., & Lutke-Eversloh, T. (2003). Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochemical Engineering Journal, 16, 81–96.

    Article  CAS  Google Scholar 

  6. Sudesh, K., Abe, H., & Doi, Y. (2000). Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Progress in Polymer Science, 25, 1503–1555.

    Article  CAS  Google Scholar 

  7. Sudesh, K., & Abe, H. (2010). Practical guide to microbial polyhydroxyalkanoates. Smithers Rapra Technology, 160p.

    Google Scholar 

  8. Volova, T. G. (2004). Polyhydroxyalkanoates—Plastic materials of the 21st century. Nova Publishers, 282p.

    Google Scholar 

  9. DeMarco, S. (2005). Advances in polyhydroxyalkanoate production in bacteria for biodegradable plastics. Basic Biotechnology eJournal, 1, 1–4.

    Google Scholar 

  10. Khanna, S., & Srivastava, A. K. (2005). Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry, 40, 607–619.

    Article  CAS  Google Scholar 

  11. Lenz, R. W., & Marchessault, R. H. (2005). Bacterial polyesters: Biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules, 6, 1–8.

    Article  CAS  Google Scholar 

  12. Hassan, M. A., Shirai, Y., & Umeki, H. (1997). Acetic acid separation from anaerobically treated palm oil mill effluent by ion exchange resins for the production of polyhydroxyalkanoate by Alcaligenes eutrophus. Bioscience, Biotechnology, and Biochemistry, 61, 1465–1468.

    Article  CAS  Google Scholar 

  13. Zahari, M. A. K. M., Ariffin, H., Mokhtar, M. N., Salihon, J., Shirai, Y., & Hassan, M. A. (2012). Factors affecting poly(3-hydroxybutyrate) production from oil palm frond juice by Cupriavidus necator (CCUG52238T). Journal of Biomedicine and Biotechnology, 2012, 125865. https://doi.org/10.1155/2012/125865

    Article  CAS  Google Scholar 

  14. UNEP. (2009). Converting waste agricultural biomass into a resource. Compendium of Technologies. United Nations Environment Programme. 441p. Retrieved from http://www.unep.org/ietc/Portals/136/Publications/Waste%20Management/WasteAgriculturalBiomassEST_Compendium.pdf.

  15. Fukui, T., Kichise, T., Yoshida, Y., Doi Y. (1997) Biosynthesis of poly(3-hydroxybutyrateco-3-hydroxyvalerate-co-3-hydroxyheptanoate) thermopolymers by recombinant Alcaligenes eutrophus. Biotechnology Letters Vol. 19: 1093–1097.

    Google Scholar 

  16. Fukui, T., & Doi, Y. (1998). Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain. Applied Microbiology and Biotechnology, 49, 333–336.

    Article  CAS  Google Scholar 

  17. Rebah, F. B., Yan, S., Filali-Meknassi, Y., Tyagi, R. D., & Surampalli, R. Y. (2004). Bacterial production of bioplastics. In R. Y. Surampalli & R. D. Tyagi (Eds.), Advances in water and wastewater treatment (pp. 42–71). ASCE Publications.

    Chapter  Google Scholar 

  18. Rebah, F. B., Prevost, D., Tyagi, R. D., & Belbahri, L. (2009). Poly-beta-hydroxybutyrate production by fast-growing rhizobia cultivated in sludge and in industrial wastewater. Applied Biochemistry and Biotechnology, 158, 155–163.

    Article  CAS  Google Scholar 

  19. Ivanov, V. (1990). Exo- and endotrophy of cell. Naukova Dumka Publishing House, 140p. (In Russian).

    Google Scholar 

  20. Ivanov, V. (2010). Environmental Microbiology for Engineers (p. 402). CRC Press, Taylor & Francis Group.

    Google Scholar 

  21. Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  22. Madigan, M.T., Martinko, J.M., Stahl, D., David, P. Clark, D.P. (2012) Brock biology of microorganisms 13th Ed Pearson.

    Google Scholar 

  23. Yu, J. (2006). Production of biodegradable thermoplastic materials from organic wastes. US Patent 7,141,400. November 28, 2006.

    Google Scholar 

  24. Choi, D., Chipman, D., Bents, S., & Brown, R. (2010). A techno-economic analysis of polyhydroxyalkanoates and hydrogen production from syngas fermentation of gasified biomass. Applied Biochemistry and Biotechnology, 160, 1032–1046.

    Article  CAS  Google Scholar 

  25. Maness, P. C., & Weaver, P. F. (1994). Production of poly-3-hydroxyalkanoates from CO and H2 by a novel photosynthetic bacterium. Applied Biochemistry and Biotechnology, 45(46), 395–406.

    Article  Google Scholar 

  26. Weaver, P. F., & Maness, P.-C. (1993). Photoconversion of gasified organic materials into biologically-degradable plastics. US Patent 5,250,427. October 5, 1993.

    Google Scholar 

  27. Braun, R., Drosg, B., Bochmann, G., Weiss, S., & Kirchmayr, R. (2010). Recent developments in bio-energy recovery through fermentation. In H. Insam, I. Franke-Whittle, & M. Goberna (Eds.), Microbes at work, from waste to resources (pp. 35–58). Springer-Verlag.

    Chapter  Google Scholar 

  28. Ivanov, V. (2014). Method for production of biodegradable plastic from organic waste. U.S. Patent Application (Provisional US Patent) 61/967616 (24 March 2014).

    Google Scholar 

  29. Du, G. C., & Yu, J. (2002). Green technology for conversion of food scraps to biodegradable thermoplastic polyhydroxyalkanoates. Environmental Science and Technology, 36, 5511–5516.

    Article  CAS  Google Scholar 

  30. Ivanov, V., Stabnikova, E. V., Stabnikov, V. P., Kim, I. S., & Zubair, A. (2002). Effects of iron compounds on the treatment of fat-containing wastewaters. Applied Biochemistry and Microbiology, 38, 255–258.

    Article  CAS  Google Scholar 

  31. Zubair, A., Ivanov, V., Hyun, S. H., Cho, K. M., & Kim, I. S. (2001). Effect of divalent iron on methanogenic fermentation of fat-containing wastewater. Environmental Engineering Research, 6, 139–146.

    Google Scholar 

  32. Li, Z., Wrenn, B. A., Mukherjee, B., & Venosa, A. (2005). Effects of ferric hydroxide on methanogenesis from lipids and long-chain fatty acids in anaerobic digestion. In: Proceedings of the Water Environment Federation, WEFTEC 2005: Session 1 through Session 10, pp. 37–52.

    Google Scholar 

  33. Li, Z., Wrenn, B. A., & Venosa, A. (2006). Effects of ferric hydroxide on methanogenesis from lipids and long-chain fatty acids in anaerobic digestion. Water Environment Research, 78, 522–530.

    Article  CAS  Google Scholar 

  34. Ivanov, V., Tay, S. T.-L., Wang, J.-Y., Stabnikova, O., Stabnikov, V., Xing, Z., & Tay, J.-H. (2004). Improvement of sludge quality by iron-reducing bacteria. Journal of Residuals Science and Technology, 1, 165–168.

    CAS  Google Scholar 

  35. Stabnikov, V. P., & Ivanov, V. N. (2006). The effect of various iron hydroxide concentrations on the anaerobic fermentation of sulfate-containing model wastewater. Applied Biochemistry and Microbiology, 42, 284–288.

    Article  CAS  Google Scholar 

  36. O’Flaherty, V., Collins, G., & Mahony, T. (2010). Anaerobic digestion of agricultural residues. In R. Mitchell & J.-D. Gu (Eds.), Environmental Microbiology (2nd ed., pp. 259–279). Wiley.

    Chapter  Google Scholar 

  37. Albuquerque, M. G. E., Eiroa, M., Torres, C., Nunes, B. R., & Reis, M. A. M. (2007). Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. Journal of Biotechnology, 130, 411–421.

    Article  CAS  Google Scholar 

  38. Raven, R. P. J. M., & Gregersen, K. H. (2007). Biogas plants in Denmark: Successes and setbacks. Renewable and Sustainable Energy Reviews, 11, 116–132.

    Article  Google Scholar 

  39. Han, S.-K., & Shin, H.-S. (2002). Enhanced acidogenic fermentation of food waste in a continuous-flow reactor. Waste Management and Research, 20, 110–118.

    Article  CAS  Google Scholar 

  40. Galil, N. I., Malachi, K. B.-D., & Sheindorf, C. (2009). Biological nutrient removal in membrane biological reactors. Environmental Engineering Science, 26, 817–824.

    Article  CAS  Google Scholar 

  41. Wang, Y. S., Odle, W., Eleazer, W. E., & and. Barlaz, M. A. (1997). Methane potential of food waste and anaerobic toxicity of leachate produced during food waste decomposition. Waste Management and Research, 15, 149–167.

    Article  CAS  Google Scholar 

  42. Barlaz, M. A., Staley, B. F., De Los Reyes, I. I. I., & F. L. (2010). Anaerobic biodegradation of solid waste. In R. Mitchell & J.-D. Gu (Eds.), Environmental microbiology (2nd ed., pp. 281–299). Wiley.

    Chapter  Google Scholar 

  43. Moosbrugger, R. E., Wentezel, M. C., Ekama, G. A., & Marais, G. V. (1993). Weak acid/bases and pH control in anaerobic systems: A review. Water South Africa, 19, 1–10.

    CAS  Google Scholar 

  44. Ahring, B. K., Angelidaki, I., & Johansen, K. (1992). Anaerobic treatment of manure together with industrial waste. Water Science and Technology, 30, 241–249.

    Article  Google Scholar 

  45. Macias-Corral, M., Samani, Z., & Hanson, A. (2008). Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresource Technology, 99, 8288–8293.

    Article  CAS  Google Scholar 

  46. Lei, X., Sugiura, N., Feng, C., & Maekawa, T. (2007). Pretreatment of anaerobic digestion effluent with ammonia stripping and biogas purification. Journal of Hazardous Materials, 145, 391–397.

    Article  CAS  Google Scholar 

  47. Abouelenien, F., Fujiwara, W., Namba, Y., Kosseva, M., Nishio, N., & Nakashimada, Y. (2010). Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Bioresource Technology, 101(16), 6368–6373.

    Article  CAS  Google Scholar 

  48. Guo, C. H., Stabnikov, V., & Ivanov, V. (2010). The removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant using ferric and nitrate bioreductions. Bioresource Technology, 101, 3992–3999.

    Article  CAS  Google Scholar 

  49. Ivanov, V., & Stabnikova, E. (1987). Stoichiometry and energetics of microbiological processes. Naukova Dumka Publishing House, 152p. (In Russian).

    Google Scholar 

  50. Chua, H., Yu, P. H. F., & Ho, L. Y. (1997). Coupling of waste water treatment with storage polymer production. Applied Biochemistry and Biotechnology, 63-65, 627–635.

    Article  CAS  Google Scholar 

  51. Dionisi, D., Majone, M., & Papa, V. (2004a). Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Biotechnology and Bioengineering, 85, 569–579.

    Article  CAS  Google Scholar 

  52. Dionisi, D., Renzi, V., Majone, M., Beccari, M., & Ramadori, R. (2004b). Storage of substrate mixtures by activated sludges under dynamic conditions in anoxic or aerobic environments. Water Research, 38, 2196–2206.

    Article  CAS  Google Scholar 

  53. Dionisi, D., Beccari, M., Gregorio, S. D., Majone, M., Papini, M. P., & Vallini, G. (2005a). Storage of biodegradable polymers by an enriched microbial community in a sequencing batch reactor operated at high organic load rate. Journal of Chemical Technology and Biotechnology, 80, 306–1318.

    Google Scholar 

  54. Dionisi, D., Carucci, G., Papini, M. P., Riccardi, C., Majone, M., & Carrasco, F. (2005b). Olive oil mill effluents as a feedstock for production of biodegradable polymers. Water Research, 39, 2076–2084.

    Article  CAS  Google Scholar 

  55. Dionisi, D., Majone, M., Vallini, G., Gregorio, S. D., & Beccari, M. (2007). Effect of the length of the cycle on biodegradable polymer production and microbial community selection in a sequencing batch reactor. Biotechnology Progress, 23, 1064–1073.

    CAS  Google Scholar 

  56. Chua, H., Yu, P. H., & Ma, C. K. (1999). Accumulation of biopolymers in activated sludge biomass. Applied Biochemistry and Biotechnology, 77-79, 389–399.

    Article  CAS  Google Scholar 

  57. Chua, A. S. M., Takabatake, H., Satoh, H., & Mino, T. (2003). Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater: Effect of pH, sludge retention time (SRT) and acetate concentration in influent. Water Research, 37, 3602–3611.

    Article  CAS  Google Scholar 

  58. Satoh, H., Iwamoto, Y., Mino, T., & Matsuo, T. (1998). Activated sludge as a possible source of biodegradable plastic. Water Science and Technology, 38, 103–109.

    Article  CAS  Google Scholar 

  59. Salehizadeh, H., & Van Loosdrecht, M. C. M. (2004). Production of polyhydroxyalkanoates by mixed culture: Recent trends and biotechnological importance. Biotechnology Advances, 22, 261–279.

    Article  CAS  Google Scholar 

  60. Cai, M. M., Chua, H., Zhao, Q.-L., Sin, N. S., & Ren, J. (2009). Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation. Bioresource Technology, 100, 1399–1405.

    Article  CAS  Google Scholar 

  61. Hu, W. F., Chua, H., & Yu, P. H. F. (1997). Synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from activated sludge. Biotechnology Letters, 19, 695–698.

    Article  CAS  Google Scholar 

  62. Reid, N. M., Slade, A. H., & Stuthridge, T. R. (2006). Process for production of biopolymers from nitrogen deficient wastewater. US Patent 6,987,011. January 17, 2006.

    Google Scholar 

  63. Serafim, L. S., Lemos, P. C., Albuquerque, M. G. E., & Reis, M. A. M. (2008). Strategies for PHA production by mixed cultures and renewable waste materials. Applied Microbiology and Biotechnology, 81, 615–628.

    Article  CAS  Google Scholar 

  64. Lemos, P. C., Serafim, L. S., & Reis, M. A. M. (2006). Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding. Journal of Biotechnology, 122, 226–238.

    Article  CAS  Google Scholar 

  65. Gray, N. F. (2004). Biology of wastewater treatment. Imperial College Press.

    Book  Google Scholar 

  66. Beun, J. J., Dircks, K., van Loosdrecht, M. C. M., et al. (2006). Poly-β-hydroxybutyrate metabolism in dynamically fed mixed microbial cultures. Water Research, 36, 1167–1180.

    Article  Google Scholar 

  67. van Loosdrecht, M. C. M., Pot, M. A., & Heijnen, J. J. (1997). Importance of bacterial storage polymers in bioprocesses. Water Science and Technology, 33, 41–47.

    Article  Google Scholar 

  68. van Loosdrecht, M. C. M., Kleerebezem, R., Muyzer, G., Jian, Y., & Johnson, K. (2008). Process for selecting polyhydroxyalkanoate (PHA) producing micro-organisms. WO/2009/153303 June 18, 2008. International Application No.: PCT/EP2009/057571.

    Google Scholar 

  69. Cappello, S., & Yakimov, M. M. (2010). Alcanivorax. In Part 19: Handbook of hydrocarbon and lipid microbiology (pp. 1737–1748). Springer.

    Chapter  Google Scholar 

  70. Hara, A., Syutsubo, K., & Harayama, S. (2003). Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environmental Microbiology, 5, 746–753.

    Article  CAS  Google Scholar 

  71. Loo, C. Y., & Sudesh, K. (2007). Biosynthesis and native granule characteristics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Delftia acidovorans. International Journal of Biological Macromolecules, 40, 466–471.

    Article  CAS  Google Scholar 

  72. Jacquel, N., Lo, C.-W., Wei, Y.-H., Wu, H.-S., & Wang, S. S. (2008). Isolation and purification of bacterial poly(3-hydroxyalkanoates). Biochemical Engineering Journal, 39, 15–27.

    Article  CAS  Google Scholar 

  73. Narasimhan, K., Noda, I., Satkowski, M. M., Cearley, A. C., Gibson, M. S., & Welling, S. J. (2006). Process for the extraction of polyhydroxyalkanoates from biomass. US Patent 7,118,897. October 10, 2006.

    Google Scholar 

  74. Chen, X. (2009). Method for separating, extracting and purifying poly-β-hydroxyalkanoates (PHAs) directly from bacterial fermentation broth. US Patent 7,582,456 September 1, 2009.

    Google Scholar 

  75. Yu, J. (2009). Recovery and purification of polyhydroxyalkanoates. US Patent 7,514,525. April 7, 2009.

    Google Scholar 

  76. Schumann, D., & Muller, R. A. (2006). Method for obtaining polyhydroxyalkanoates (PHA) and the copolymers thereof. US Patent 7,070,966. July 4, 2006.

    Google Scholar 

  77. Holmes, P. A., & Lim, G. B. (1990). Separation process. United States Patent 4,910,145. March 20, 1990.

    Google Scholar 

  78. Van Hee, P., Elumbaring, C. M. R. A., Van der Lans, R. G. J. M., & Van der Wielen, L. A. M. (2006). Selective recovery of polyhydroxyalkanoate inclusion bodies from fermentation broth by dissolved-air flotation. Journal of Colloid and Interface Science, 297, 595–606.

    Article  CAS  Google Scholar 

  79. Chen, G. Q., Wu, Q., Wang, Y., & Zheng, Z. (2005). Application of microbial polyesters–polyhydroxyalkanoates as tissue engineering materials. Key Engineering Materials, 288–289, 437–440.

    Article  Google Scholar 

  80. Mergaert, J., Anderson, C., Wouters, A., Swings, J., & Kerster, K. (1992). Biodegradation of polyhydroxyalkanoates. FEMS Microbiology Reviews, 103, 317–322.

    Article  CAS  Google Scholar 

  81. Reddy, C. S., Ghai, R., Rashmi, C., & Kalia, V. C. (2003). Polyhydroxyalkanoates: An overview. Bioresource Technology, 87, 137–146.

    Article  CAS  Google Scholar 

  82. Chen, B. K., & Lo, S. H. (2012). Thermally stable biopolymer for tissue scaffolds. Plastic Research Online. Society of Plastic Engineers. Retrieved from http://www.4spepro.org.

  83. Giner, J. M. E., Boronat, T., Balart, R., Fages, E., & Moriana R. (2012). Antioxidant effects of natural compounds on green composite materials. Plastic Research Online. Society of Plastic Engineers. Retrieved from http://www.4spepro.org.

  84. Verbeek, C. J. R., & van den Berg, L. E. (2010). Extrusion processing and properties of protein-based thermoplastics. Macromolecular Materials and Engineering, 295, 10–21.

    Article  CAS  Google Scholar 

  85. Plank, J. (2004). Application of biopolymers and other biotechnological products in building materials. Applied Microbiology and Biotechnology, 66, 1–9.

    Article  CAS  Google Scholar 

  86. Ramesh, B. N. G., Anitha, N., & Rani, H. K. R. (2010). Recent trends in biodegradable products from biopolymers. Advances in Biotechnology, 9, 30–34.

    Google Scholar 

  87. Philip, S., Keshavarz, T., & Roy, I. (2007). Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. Journal of Chemical Technology and Biotechnology, 82, 233–247.

    Article  CAS  Google Scholar 

  88. Lee, S., Chung, M., Park, H. M., Song, K. I., & Chang, I. (2019). Xanthan gum biopolymer as soil-stabilization binder for road construction using local soil in Sri Lanka. Journal of Materials in Civil Engineering, 31(11), 9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Tse Hung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ivanov, V., Hung, YT., Stabnikov, V., Tiong, R.LK., Salyuk, A. (2022). Production and Applications of Crude Polyhydroxyalkanoate-Containing Bioplastic from the Agricultural and Food-Processing Wastes. In: Wang, L.K., Wang, MH.S., Hung, YT. (eds) Waste Treatment in the Biotechnology, Agricultural and Food Industries. Handbook of Environmental Engineering, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-031-03591-3_7

Download citation

Publish with us

Policies and ethics