Skip to main content

Bacteriophage as Templates for Refactoring

  • Chapter
Genome Refactoring

Part of the book series: Synthesis Lectures on Synthetic Biology ((SLSB))

  • 37 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 14.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 22.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackermann, H. W. (2007). 5500 phages examined in the electron microscope. Archives of Virology, 152(2), pp. 227–243. doi:10.1007/s00705-006-0849-1

    Article  Google Scholar 

  • Calendar, R. (Ed.). (2006). The bacteriophages (2nd ed.). Oxford: Oxford University Press. doi:10.1086/509419

    Google Scholar 

  • Chan, L. Y., Kosuri, S., & Endy, D. (2005). Refactoring bacteriophage T7. Molecular Systems Biology, 1, p. 2005.0018. doi:10.1038/msb4100025

    Article  Google Scholar 

  • Clackson, T., & Lowman, H. B. (Eds.). (2004). Phage display: A practical approach. Oxford: Oxford University Press.

    Google Scholar 

  • Cold Spring Harbor Laboratory of Quantitative Biology, Cairns, J., & Delbrück, M. (1966). Phage and the origins of molecular biology [essays]. Cold Springs Harbor, New York. CSHL Press

    Google Scholar 

  • Dunn, J. J., & Studier, F. W. (1983). Complete nucleotide sequence of bacteriophage T7 DNA and the locations ofT7 genetic elements. Journal of Molecular Biology, 166(4), pp. 477–535. doi:10.1016/S0022-2836(83)80282-4

    Article  Google Scholar 

  • Endy, D., Kong, D., & Yin, J. (1997). Intracellular kinetics of a growing virus: A genetically structured simulation for bacteriophage T7. Biotechnology and Bioengineering, 55(2), pp. 375–389. doi:10.1002/(SICI)1097-0290(19970720)55:2<375::AID-BITl5>3.0.CO;2-G

    Article  Google Scholar 

  • Garcia, L. R., & Molineux, I. J. (1995). Incomplete entry of bacteriophage T7 DNA into F plasmid-containing Escherichia coli. Journal of Bacteriology, 177(14), pp. 4077–4083.

    Article  Google Scholar 

  • Garcia, L. R., & Molineux, I. J. (1996). Transcription-independent DNA translocation of bacteriophage T7 DNA into Escherichia coli. Journal of Bacteriology, 178(23), pp. 6921–6929.

    Article  Google Scholar 

  • Garcia, P., Martinez, B., Obeso, J. M., & Rodriguez, A. (2008). Bacteriophages and their application in food safety. Letters in Applied Microbiology, 47(6), pp. 479–485. doi:10.1111/ j.1472-765X.2008.02458.x

    Article  Google Scholar 

  • Gregori, S., Bono, E., Gallazzi, F., Hammer, J., Harrison, L. C., & Adorini, L. (2000). The motif for peptide binding to the insulin-dependent diabetes mellitus-associated class II MHC molecule I-Ag7 validated by phage display library. International Immunology, 12(4), pp. 493–503. doi:10.1093/intimm/12.4.493

    Article  Google Scholar 

  • Kishchenko, G., Batliwala, H., & Makowski, L. (1994). Structure of a foreign peptide displayed on the surface of bacteriophage M13. Journal of Molecular Biology, 241(2), pp. 208–213. doi:10.1006/jmbi.1994.1489

    Article  Google Scholar 

  • Kuldell, N. (2007). Authentic teaching and learning through synthetic biology. Journal of Biological Engineering, 1, p. 8. doi:10.1186/1754-1611-1-8

    Article  Google Scholar 

  • Masamune, Y., Frenkel, G. D., & Richardson, C. C. (1971). A mutant of bacteriophage T7 deficient in polynucleotide ligase. The Journal of Biological Chemistry, 246(22), pp. 6874–6879.

    Article  Google Scholar 

  • Mattey, M., & Spencer, J. (2008). Bacteriophage therapy—cooked goose or phoenix rising? Current Opinion in Biotechnology, 19(6), pp. 608–612. doi:10.1016/j.copbio.2008.09.001

    Article  Google Scholar 

  • Medhekar, B., & Miller, J. F. (2007). Diversity-generating retroelements. Current Opinion in Microbiology, 10(4), pp. 388–395. doi:10.1016/j.mib.2007.06.004

    Article  Google Scholar 

  • Merzlyak, A., & Lee, S. W. (2006). Phage as templates for hybrid materials and mediators for nano-material synthesis. Current Opinion in Chemical Biology, 10(3), pp. 246–252. doi:10.1016/ j.cbpa.2006.04.008

    Article  Google Scholar 

  • Ph.D. peptide display cloning system (E8101), phage display, NEB. Retrieved March 19, 2009, from http://www.neb.com/nebecomm/products/productE8101.asp. Ptashne, M. (2004). A genetic switch: Phage lambda revisited (3rd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Sidhu, S. S., Feld, B. K., & Weiss, G. A. (2007). M13 bacteriophage coat proteins engineered for improved phage display. Methods in Molecular Biology (Clifton, N.J.), 352, pp. 205–219. doi:10.1385/1-59745-187-8:205

    Google Scholar 

  • Simons, G. F., Konings, R. N., & Schoenmakers, J. G. (1979). Identification of two new cap-sid proteins in bacteriophage M13. FEBS Letters, 106(1), pp. 8–12. doi:10.1016/0014-5793(79)80683-3

    Article  Google Scholar 

  • Smith, G. P. (1985). Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science (New York, NY), 228(4705), pp. 1315–1317. doi:10.1126/ science.4001944

    Article  Google Scholar 

  • Specthrie, L., Bullitt, E., Horiuchi, K., Model, P., Russel, M., & Makowski, L. (1992). Construction of a microphage variant of filamentous bacteriophage. Journal of Molecular Biology, 228(3), pp. 720–724. doi:10.1016/0022-2836(92)90858-H

    Article  Google Scholar 

  • Studier, F. W. (1969). The genetics and physiology of bacteriophage T7. Virology, 39(3), pp. 562–574. doi:10.1016/0042-6822(69)90104-4

    Article  Google Scholar 

  • Studier, F. W., & Maizel, J. V., Jr. (1969). T7-directed protein synthesis. Virology, 39(3), pp. 575–586. doi:10.1016/0042-6822(69)90105-6

    Article  Google Scholar 

  • Sugimoto, K., Sugisaki, H., Okamoto, T., & Takanami, M. (1977). Studies on bacteriophage fd DNA. IV. the sequence of messenger RNA for the major coat protein gene. Journal of Molecular Biology, 111(4), pp. 487–507. doi:10.1016/S0022-2836(77)80065-X

    Article  Google Scholar 

  • van Wezenbeek, P. M., Hulsebos, T. J., & Schoenmakers, J. G. (1980). Nucleotide sequence of the filamentous bacteriophage M13 DNA genome: Comparison with phage fd. Gene, 11(1–2), pp. 129–148.

    Article  Google Scholar 

  • Vieira, J., & Messing, J. (1987). Production of single-stranded plasmid DNA. Methods in Enzy- mology, 153, pp. 3–11. doi:10.1016/0076-6879(87)53044-0

    Article  Google Scholar 

  • Weiss, G. A., Roth, T. A., Baldi, P. F., & Sidhu, S. S. (2003). Comprehensive mutagenesis of the C-terminal domain of the M13 gene-3 minor coat protein: The requirements for assembly into the bacteriophage particle. Journal of Molecular Biology, 332(4), pp. 777–782. doi:10.1016/S0022-2836(03)00950-1

    Article  Google Scholar 

  • Yu, J. S., Kokoska, R. J., Khemici, V., & Steege, D. A. (2007). In-frame overlapping genes: The challenges for regulating gene expression. Molecular Microbiology, 63(4), pp. 1158–1172. doi:10.1111/j.1365-2958.2006.05572.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Kuldell, N., Lerner, N. (2009). Bacteriophage as Templates for Refactoring. In: Genome Refactoring. Synthesis Lectures on Synthetic Biology. Springer, Cham. https://doi.org/10.1007/978-3-031-02569-3_2

Download citation

Publish with us

Policies and ethics