Skip to main content

Tools for Genome Engineering and Synthetic Biology

  • Chapter
Genome Refactoring

Part of the book series: Synthesis Lectures on Synthetic Biology ((SLSB))

  • 36 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 14.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 22.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arkin, A. (2008). Setting the standard in synthetic biology. Nature Biotechnology, 26(7), pp. 771–774. doi:10.1038/nbt0708-771

    Article  Google Scholar 

  • Beaucage, S. L., & Caruthers, M. H. (1981). Deoxynucleoside phosphoramidites—A new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Letters, 22(20), pp. 1859–1862. doi:10.1016/S0040-4039(01)90461-7

    Article  Google Scholar 

  • Bio FAB Group, Baker, D., Church, G., Collins, J., Endy, D., Jacobson, J., et al. (2006). Engineering life: Building a fab for biology. Scientific American, 294(6), pp. 44–51.

    Article  Google Scholar 

  • Brockman, J., & Weinberger, R. (2008). ENGINEERING BIOLOGY: A talk with Drew Endy. Retrieved March 18, 2009, from http://www.edge.org/3rd_culture/endy08/endy08_index.html

    Google Scholar 

  • Calendar, R. (Ed.). (2006). The bacteriophages (2nd ed.). Oxford: Oxford University Press. doi: 10.1086/509419

    Google Scholar 

  • Canton, B., Labno, A., & Endy, D. (2008). Refinement and standardization of synthetic biological parts and devices. Nature Biotechnology, 26(7), pp. 787–793. doi:10.1038/nbt1413

    Article  Google Scholar 

  • Carlson, R. (2003). The pace and proliferation of biological technologies. Biosecurity and Bioterror-ism: Biodefense Strategy, Practice, and Science, 1(3), pp. 203–214. doi:10.1089/15387130376 9201851

    Article  Google Scholar 

  • Carlson, R. (2008). Gene synthesis cost update. Retrieved March 18, 2009, from http://www.synthesis .cc/2008/11/gene-synthesis-cost-update.html

    Google Scholar 

  • Caruthers, M. H., Beaucage, S. L., Becker, C., Efcavitch, J. W., Fisher, E. F., Galluppi, G., et al. (1983). Deoxyoligonucleotide synthesis via the phosphoramidite method. Gene Amplification and Analysis, 3, pp. 1–26.

    Google Scholar 

  • Chan, L. Y., Kosuri, S., & Endy, D. (2005). Refactoring bacteriophage T7. Molecular Systems Biology, 1, p. 2005.0018. doi:10.1038/msb4100025

    Article  Google Scholar 

  • Dunn, J. J., & Studier, F. W. (1983). Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. Journal of Molecular Biology, 166(4), pp. 477–535. doi:10.1016/S0022-2836(83)80282-4

    Article  Google Scholar 

  • Endy, D. (2005). Foundations for engineering biology. Nature, 438(7067), pp. 449–453. doi:10.1038/ nature04342

    Article  Google Scholar 

  • Endy, D., You, L., Yin, J., & Molineux, I. J. (2000). Computation, prediction, and experimental tests of fitness for bacteriophage T7 mutants with permuted genomes. Proceedings of the National Academy of Sciences of the United States of America, 97(10), pp. 5375–5380. doi:10.1073/ pnas.090101397

    Article  Google Scholar 

  • Integrated DNA Technologies (2005). Chemical synthesis of oligonucleotides. Retrieved March 18, 2009, from http://www.idtdna.com/TechVault/TechVault.aspx Knight, T. (2003). Idempotent vector design for standard assembly of biobricks. Retrieved March 18, 2009, from http://dspace.mit.edu/handle/1721.1/21168

    Google Scholar 

  • Knight, T. F. (2005). Engineering novel life. Molecular Systems Biology, 1, 2005.0020. doi:10.1038/ msb4100028

    Article  Google Scholar 

  • Kosuri, S. (2007). Simulation, models, and refactoring of bacteriophage T7. Retrieved March 18, 2009, from http://hdl.handle.net/1721.1/35864

    Google Scholar 

  • Kuldell, N. (2007). Authentic teaching and learning through synthetic biology. Journal of Biological Engineering, 1, 8. doi:10.1186/1754-1611-1-8

    Article  Google Scholar 

  • Petroski, H. (1985). To engineer is human: The role of failure in successful design. New York, NY: St. Martin’s Press.

    Google Scholar 

  • Registry of Standard Biological Parts (2009). Retrieved March 18, 2009, from http://partsregistry .org/Part:BBaJ45014

    Google Scholar 

  • Stahler, P., Beier, M., Gao, X., & Hoheisel, J. D. (2006). Another side of genomics: Synthetic biology as a means for the exploitation of whole-genome sequence information. Journal of Biotechnology, 124(1), pp. 206–212. doi:10.1016/j.jbiotec.2005.12.011

    Article  Google Scholar 

  • Studier, F. W. (1969). The genetics and physiology of bacteriophage T7. Virology, 39(3), pp. 562–574. doi:10.1016/0042-6822(69)90104-4

    Article  Google Scholar 

  • Van Regenmortel, M. H. (2004). Reductionism and complexity in molecular biology. scientists now have the tools to unravel biological and overcome the limitations of reductionism. EMBO Reports, 5(11), pp. 1016–1020.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Kuldell, N., Lerner, N. (2009). Tools for Genome Engineering and Synthetic Biology. In: Genome Refactoring. Synthesis Lectures on Synthetic Biology. Springer, Cham. https://doi.org/10.1007/978-3-031-02569-3_1

Download citation

Publish with us

Policies and ethics