Abstract
With the recent advances of modular robots and low-cost manipulators, the evolution of robots, including morphologies and controllers, has become possible to perform in a physical setup without using any simulators. In this scenario, the evolution cannot be parallelized and the wall time becomes a scarce resource that should be used wisely. This paper analyses different algorithms by using the wall time as a stopping criterion for evolution, and it takes into account that wall time depends on the evaluation time plus the time to assemble and disassemble robots before and after an evaluation. The experiments have been performed in simulation, but the evaluation and assembly time have been carefully modelled from previous hardware experiments. Results suggest that (i) genetic algorithms are severely penalized, (ii) genetic algorithms can be improved by performing several evaluations of controllers for each morphology, and that (iii) evolutionary strategies that can chain several evaluations of robots with close morphologies can outperform other evolutionary algorithms. This finding is not surprising, but to the best of our knowledge previous attempts to evolve modular robots in hardware have not employed evolutionary strategies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
More information about the Emerge robot can be found at https://sites.google.com/view/emergemodular.
References
Auerbach, J., et al.: RoboGen: robot generation through artificial evolution. In: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems, Artificial Life, pp. 136ā137. The MIT Press, New York (2014). https://doi.org/10.7551/978-0-262-32621-6-ch022
Brodbeck, L., Hauser, S., Iida, F.: Morphological evolution of physical robots through model-free phenotype development. PLoS ONE 10(6), 1ā17 (2015). https://doi.org/10.1371/journal.pone.0128444
CaamaƱo, P., TedĆn, R., Paz-Lopez, A., Becerra, J.A.: JEAF: a Java evolutionary algorithm framework. In: IEEE Congress on Evolutionary Computation, pp. 1ā8. IEEE (2010)
Cheney, N., Bongard, J., SunSpiral, V., Lipson, H.: Scalable co-optimization of morphology and control in embodied machines. J. Roy. Soc. Interface 15(143), 20170937 (2018)
Chocron, O.: Evolutionary design of modular robotic arms. Robotica 26(3), 323ā330 (2008). https://doi.org/10.1017/S0263574707003931
Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like animals. Nature 521(7553), 503ā507 (2015). https://doi.org/10.1038/nature14422
FaĆƱa, A., Bellas, F., LĆ³pez-PeƱa, F., Duro, R.J.: EDHMoR: evolutionary designer of heterogeneous modular robots. Eng. Appl. Artif. Intell. 26(10), 2408ā2423 (2013). https://doi.org/10.1016/j.engappai.2013.09.009
Goff, L.K.L., et al.: Morpho-evolution with learning using a controller archive as an inheritance mechanism. arXiv:2104.04269 [cs], September 2021
Hale, M.F., et al.: Hardware design for autonomous robot evolution. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 2140ā2147, December 2020. https://doi.org/10.1109/SSCI47803.2020.9308204
Hale, M.F., et al.: The ARE robot fabricator: how to (re)produce robots that can evolve in the real world. In: The 2019 Conference on Artificial Life, pp. 95ā102. MIT Press, Cambridge (2019). https://doi.org/10.1162/isal_a_00147.xml
Jelisavcic, M., Glette, K., Haasdijk, E., Eiben, A.E.: Lamarckian evolution of simulated modular robots. Front. Robot. AI 6, 9 (2019). https://doi.org/10.3389/frobt.2019.00009
Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: a survey. Int. J. Robot. Res. 32(11), 1238ā1274 (2013). https://doi.org/10.1177/0278364913495721
Koos, S., Mouret, J.B., Doncieux, S.: The transferability approach: crossing the reality gap in evolutionary robotics. IEEE Trans. Evol. Comput. 17(1), 122ā145 (2013). https://doi.org/10.1109/TEVC.2012.2185849
Lan, G., De Carlo, M., van Diggelen, F., Tomczak, J.M., Roijers, D.M., Eiben, A.E.: Learning directed locomotion in modular robots with evolvable morphologies. Appl. Soft Comput. 111 (2021). https://doi.org/10.1016/j.asoc.2021.107688
Lipson, H., Sunspiral, V., Bongard, J., Cheney, N.: On the difficulty of co-optimizing morphology and control in evolved virtual creatures. In: Artificial Life Conference Proceedings 13, pp. 226ā233. MIT Press (2016)
Marbach, D., Ijspeert, A.J.: Online optimization of modular robot locomotion. In: IEEE International Conference Mechatronics and Automation, vol. 1, pp. 248ā253. IEEE (2005)
Moreno, R., et al.: Automated reconfiguration of modular robots using robot manipulators. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 884ā891, November 2018. https://doi.org/10.1109/SSCI.2018.8628628
Moreno, R., Faina, A.: Reusability vs morphological space in physical robot evolution. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 1389ā1391 (2020)
Moreno, R., FaiƱa, A.: EMERGE modular robot: a tool for fast deployment of evolved robots. Front. Robot. AI 8, 198 (2021). https://doi.org/10.3389/frobt.2021.699814
Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. arXiv:1504.04909 [cs, q-bio], April 2015
Nolfi, S., Bongard, J., Husbands, P., Floreano, D.: Evolutionary robotics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 2035ā2068. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_76
Nordmoen, J., Nygaard, T.F., Samuelsen, E., Glette, K.: On restricting real-valued genotypes in evolutionary algorithms. In: Castillo, P.A., JimĆ©nez Laredo, J.L. (eds.) EvoApplications 2021. LNCS, vol. 12694, pp. 3ā16. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72699-7_1
Nordmoen, J., Veenstra, F., Ellefsen, K.O., Glette, K.: MAP-elites enables powerful stepping stones and diversity for modular robotics. Front. Robot. AI 8, 56 (2021). https://doi.org/10.3389/frobt.2021.639173
Nygaard, T.F., Martin, C.P., Samuelsen, E., Torresen, J., Glette, K.: Real-world evolution adapts robot morphology and control to hardware limitations. In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO 2018, pp. 125ā132. Association for Computing Machinery, New York, July 2018. https://doi.org/10.1145/3205455.3205567
Nygaard, T.F., Martin, C.P., Torresen, J., Glette, K., Howard, D.: Real-world embodied AI through a morphologically adaptive quadruped robot. Nat. Mach. Intell. 3(5), 410ā419 (2021). https://doi.org/10.1038/s42256-021-00320-3
Rohmer, E., Singh, S.P.N., Freese, M.: V-REP: a versatile and scalable robot simulation framework. In: IROS 2013, pp. 1321ā1326. IEEE, Tokyo, November 2013. https://doi.org/10.1109/IROS.2013.6696520
Sims, K.: Evolving virtual creatures. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH 1994, pp. 15ā22. ACM Press, New York (1994). https://doi.org/10.1145/192161.192167
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Moreno, R., FaiƱa, A. (2022). Out of Time: On the Constrains that Evolution in Hardware Faces When Evolving Modular Robots. In: JimƩnez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds) Applications of Evolutionary Computation. EvoApplications 2022. Lecture Notes in Computer Science, vol 13224. Springer, Cham. https://doi.org/10.1007/978-3-031-02462-7_42
Download citation
DOI: https://doi.org/10.1007/978-3-031-02462-7_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-02461-0
Online ISBN: 978-3-031-02462-7
eBook Packages: Computer ScienceComputer Science (R0)