Skip to main content

Out of Time: On the Constrains that Evolution in Hardware Faces When Evolving Modular Robots

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2022)

Abstract

With the recent advances of modular robots and low-cost manipulators, the evolution of robots, including morphologies and controllers, has become possible to perform in a physical setup without using any simulators. In this scenario, the evolution cannot be parallelized and the wall time becomes a scarce resource that should be used wisely. This paper analyses different algorithms by using the wall time as a stopping criterion for evolution, and it takes into account that wall time depends on the evaluation time plus the time to assemble and disassemble robots before and after an evaluation. The experiments have been performed in simulation, but the evaluation and assembly time have been carefully modelled from previous hardware experiments. Results suggest that (i) genetic algorithms are severely penalized, (ii) genetic algorithms can be improved by performing several evaluations of controllers for each morphology, and that (iii) evolutionary strategies that can chain several evaluations of robots with close morphologies can outperform other evolutionary algorithms. This finding is not surprising, but to the best of our knowledge previous attempts to evolve modular robots in hardware have not employed evolutionary strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    More information about the Emerge robot can be found at https://sites.google.com/view/emergemodular.

References

  1. Auerbach, J., et al.: RoboGen: robot generation through artificial evolution. In: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems, Artificial Life, pp. 136ā€“137. The MIT Press, New York (2014). https://doi.org/10.7551/978-0-262-32621-6-ch022

  2. Brodbeck, L., Hauser, S., Iida, F.: Morphological evolution of physical robots through model-free phenotype development. PLoS ONE 10(6), 1ā€“17 (2015). https://doi.org/10.1371/journal.pone.0128444

    ArticleĀ  Google ScholarĀ 

  3. CaamaƱo, P., TedĆ­n, R., Paz-Lopez, A., Becerra, J.A.: JEAF: a Java evolutionary algorithm framework. In: IEEE Congress on Evolutionary Computation, pp. 1ā€“8. IEEE (2010)

    Google ScholarĀ 

  4. Cheney, N., Bongard, J., SunSpiral, V., Lipson, H.: Scalable co-optimization of morphology and control in embodied machines. J. Roy. Soc. Interface 15(143), 20170937 (2018)

    ArticleĀ  Google ScholarĀ 

  5. Chocron, O.: Evolutionary design of modular robotic arms. Robotica 26(3), 323ā€“330 (2008). https://doi.org/10.1017/S0263574707003931

    ArticleĀ  Google ScholarĀ 

  6. Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like animals. Nature 521(7553), 503ā€“507 (2015). https://doi.org/10.1038/nature14422

    ArticleĀ  Google ScholarĀ 

  7. FaƭƱa, A., Bellas, F., LĆ³pez-PeƱa, F., Duro, R.J.: EDHMoR: evolutionary designer of heterogeneous modular robots. Eng. Appl. Artif. Intell. 26(10), 2408ā€“2423 (2013). https://doi.org/10.1016/j.engappai.2013.09.009

    ArticleĀ  Google ScholarĀ 

  8. Goff, L.K.L., et al.: Morpho-evolution with learning using a controller archive as an inheritance mechanism. arXiv:2104.04269 [cs], September 2021

  9. Hale, M.F., et al.: Hardware design for autonomous robot evolution. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 2140ā€“2147, December 2020. https://doi.org/10.1109/SSCI47803.2020.9308204

  10. Hale, M.F., et al.: The ARE robot fabricator: how to (re)produce robots that can evolve in the real world. In: The 2019 Conference on Artificial Life, pp. 95ā€“102. MIT Press, Cambridge (2019). https://doi.org/10.1162/isal_a_00147.xml

  11. Jelisavcic, M., Glette, K., Haasdijk, E., Eiben, A.E.: Lamarckian evolution of simulated modular robots. Front. Robot. AI 6, 9 (2019). https://doi.org/10.3389/frobt.2019.00009

    ArticleĀ  Google ScholarĀ 

  12. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: a survey. Int. J. Robot. Res. 32(11), 1238ā€“1274 (2013). https://doi.org/10.1177/0278364913495721

    ArticleĀ  Google ScholarĀ 

  13. Koos, S., Mouret, J.B., Doncieux, S.: The transferability approach: crossing the reality gap in evolutionary robotics. IEEE Trans. Evol. Comput. 17(1), 122ā€“145 (2013). https://doi.org/10.1109/TEVC.2012.2185849

    ArticleĀ  Google ScholarĀ 

  14. Lan, G., De Carlo, M., van Diggelen, F., Tomczak, J.M., Roijers, D.M., Eiben, A.E.: Learning directed locomotion in modular robots with evolvable morphologies. Appl. Soft Comput. 111 (2021). https://doi.org/10.1016/j.asoc.2021.107688

  15. Lipson, H., Sunspiral, V., Bongard, J., Cheney, N.: On the difficulty of co-optimizing morphology and control in evolved virtual creatures. In: Artificial Life Conference Proceedings 13, pp. 226ā€“233. MIT Press (2016)

    Google ScholarĀ 

  16. Marbach, D., Ijspeert, A.J.: Online optimization of modular robot locomotion. In: IEEE International Conference Mechatronics and Automation, vol. 1, pp. 248ā€“253. IEEE (2005)

    Google ScholarĀ 

  17. Moreno, R., et al.: Automated reconfiguration of modular robots using robot manipulators. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 884ā€“891, November 2018. https://doi.org/10.1109/SSCI.2018.8628628

  18. Moreno, R., Faina, A.: Reusability vs morphological space in physical robot evolution. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 1389ā€“1391 (2020)

    Google ScholarĀ 

  19. Moreno, R., FaiƱa, A.: EMERGE modular robot: a tool for fast deployment of evolved robots. Front. Robot. AI 8, 198 (2021). https://doi.org/10.3389/frobt.2021.699814

    ArticleĀ  Google ScholarĀ 

  20. Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. arXiv:1504.04909 [cs, q-bio], April 2015

  21. Nolfi, S., Bongard, J., Husbands, P., Floreano, D.: Evolutionary robotics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 2035ā€“2068. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_76

    ChapterĀ  Google ScholarĀ 

  22. Nordmoen, J., Nygaard, T.F., Samuelsen, E., Glette, K.: On restricting real-valued genotypes in evolutionary algorithms. In: Castillo, P.A., JimĆ©nez Laredo, J.L. (eds.) EvoApplications 2021. LNCS, vol. 12694, pp. 3ā€“16. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72699-7_1

    ChapterĀ  Google ScholarĀ 

  23. Nordmoen, J., Veenstra, F., Ellefsen, K.O., Glette, K.: MAP-elites enables powerful stepping stones and diversity for modular robotics. Front. Robot. AI 8, 56 (2021). https://doi.org/10.3389/frobt.2021.639173

    ArticleĀ  Google ScholarĀ 

  24. Nygaard, T.F., Martin, C.P., Samuelsen, E., Torresen, J., Glette, K.: Real-world evolution adapts robot morphology and control to hardware limitations. In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO 2018, pp. 125ā€“132. Association for Computing Machinery, New York, July 2018. https://doi.org/10.1145/3205455.3205567

  25. Nygaard, T.F., Martin, C.P., Torresen, J., Glette, K., Howard, D.: Real-world embodied AI through a morphologically adaptive quadruped robot. Nat. Mach. Intell. 3(5), 410ā€“419 (2021). https://doi.org/10.1038/s42256-021-00320-3

    ArticleĀ  Google ScholarĀ 

  26. Rohmer, E., Singh, S.P.N., Freese, M.: V-REP: a versatile and scalable robot simulation framework. In: IROS 2013, pp. 1321ā€“1326. IEEE, Tokyo, November 2013. https://doi.org/10.1109/IROS.2013.6696520

  27. Sims, K.: Evolving virtual creatures. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH 1994, pp. 15ā€“22. ACM Press, New York (1994). https://doi.org/10.1145/192161.192167

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moreno, R., FaiƱa, A. (2022). Out of Time: On the Constrains that Evolution in Hardware Faces When Evolving Modular Robots. In: JimƩnez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds) Applications of Evolutionary Computation. EvoApplications 2022. Lecture Notes in Computer Science, vol 13224. Springer, Cham. https://doi.org/10.1007/978-3-031-02462-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02462-7_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02461-0

  • Online ISBN: 978-3-031-02462-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics