Skip to main content

A Methodology for Determining Ion Channels from Membrane Potential Neuronal Recordings

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2022)

Abstract

Using differential evolution and statistical analysis, this paper investigates a methodology that is capable of determining the ion channels in a neuron from membrane potential data obtained by the current-clamp method. These data provide the aggregated electrical response of the neuron under stimulation by integrating the individual responses of the different ion channels involved. The proposed methodology aims at determining which are these ion channels based on the hypothesis that each ion channel provides a specific signature in the aggregated response that we are able to detect. In order to assess the methodology, we propose a benchmark of synthetic data where the types of ion channels are predefined in advance. Results show that the methodology is able to determine the correct ion channels in three out of the four data sets. Furthermore, we obtain some hints for future enhancements on the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    DE Parameters and parameter ranges are in Appendix B.

References

  1. Bargmann, C.I.: Neurobiology of the caenorhabditis elegans genome. Science 282(5396), 2028–2033 (1998)

    Article  Google Scholar 

  2. Buhry, L., Grassia, F., Giremus, A., Grivel, E., Renaud, S., Saïghi, S.: Automated parameter estimation of the hodgkin-huxley model using the differential evolution algorithm: application to neuromimetic analog integrated circuits. Neural Comput. 23(10), 2599–2625 (2011)

    Article  Google Scholar 

  3. Buhry, L., Pace, M., Saïghi, S.: Global parameter estimation of an hodgkin-huxley formalism using membrane voltage recordings: application to neuro-mimetic analog integrated circuits. Neurocomputing 81, 75–85 (2012)

    Article  Google Scholar 

  4. Buhry, L., Saighi, S., Giremus, A., Grivel, E., Renaud, S.: Parameter estimation of the hodgkin-huxley model using metaheuristics: application to neuromimetic analog integrated circuits. In: 2008 IEEE Biomedical Circuits and Systems Conference, pp. 173–176. IEEE (2008)

    Google Scholar 

  5. Chalasani, S.H., et al.: Dissecting a circuit for olfactory behaviour in caenorhabditis elegans. Nature 450(7166), 63 (2007)

    Article  Google Scholar 

  6. Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  7. Druckmann, S., Banitt, Y., Gidon, A.A., Schürmann, F., Markram, H., Segev, I.: A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Front. Neurosci. 1, 1 (2007)

    Article  Google Scholar 

  8. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. NCS, Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-44874-8

    Book  MATH  Google Scholar 

  9. Emtage, L., Aziz-Zaman, S., Padovan-Merhar, O., Horvitz, H.R., Fang-Yen, C., Ringstad, N.: Irk-1 potassium channels mediate peptidergic inhibition of caenorhabditis elegans serotonin neurons via a go signaling pathway. J. Neurosci. 32(46), 16285–16295 (2012)

    Article  Google Scholar 

  10. Goodman, M.B., Hall, D.H., Avery, L., Lockery, S.R.: Active currents regulate sensitivity and dynamic range in C. elegans neurons. Neuron 20(4), 763–772 (1998)

    Article  Google Scholar 

  11. Gordus, A., Pokala, N., Levy, S., Flavell, S.W., Bargmann, C.I.: Feedback from network states generates variability in a probabilistic olfactory circuit. Cell 161(2), 215–227 (2015)

    Article  Google Scholar 

  12. Hendricks, M., Ha, H., Maffey, N., Zhang, Y.: Compartmentalized calcium dynamics in a C. elegans interneuron encode head movement. Nature 487(7405), 99–103 (2012)

    Article  Google Scholar 

  13. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  14. Hodgkin, A.L., Huxley, A.F., Katz, B.: Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116(4), 424–448 (1952)

    Article  Google Scholar 

  15. Hodgkin, A.L., Huxley, A.F.: The components of membrane conductance in the giant axon of Loligo. J. Physiol. 116(4), 473–496 (1952)

    Article  Google Scholar 

  16. Hodgkin, A.L., Huxley, A.F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116(4), 449–472 (1952)

    Article  Google Scholar 

  17. Hodgkin, A.L., Huxley, A.F.: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. 116(4), 497–506 (1952)

    Article  Google Scholar 

  18. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979)

    MathSciNet  MATH  Google Scholar 

  19. Iavarone, E., et al.: Experimentally-constrained biophysical models of tonic and burst firing modes in thalamocortical neurons. PLoS Comput. Biol. 15(5), e1006753 (2019)

    Article  Google Scholar 

  20. Izhikevich, E.M.: Dynamical Systems in Neuroscience. MIT Press, Cambridge (2007)

    Google Scholar 

  21. Kuramochi, M., Doi, M.: A computational model based on multi-regional calcium imaging represents the spatio-temporal dynamics in a caenorhabditis elegans sensory neuron. PLoS ONE 12(1), e0168415 (2017)

    Article  Google Scholar 

  22. Liu, Q., Kidd, P.B., Dobosiewicz, M., Bargmann, C.I.: C. elegans awa olfactory neurons fire calcium-mediated all-or-none action potentials. Cell 175(1), 57–70 (2018)

    Article  Google Scholar 

  23. Naudin, L., Corson, N., Aziz-Alaoui, M., Jiménez Laredo, J.L., Démare, T.: On the modeling of the three types of non-spiking neurons of the caenorhabditis elegans. Int. J. Neural Syst. 31, S012906572050063X (2020)

    Google Scholar 

  24. Naudin, L., Laredo, J.L.J., Liu, Q., Corson, N.: Systematic generation of biophysically detailed models with generalization capability for non-spiking neurons. hal-03474984 (2021)

    Google Scholar 

  25. Nguyen, V.K., Hernandez-Vargas, E.A.: Parameter estimation in mathematical models of viral infections using R. In: Yamauchi, Y. (ed.) Influenza Virus. MMB, vol. 1836, pp. 531–549. Springer, New York (2018). https://doi.org/10.1007/978-1-4939-8678-1_25

    Chapter  Google Scholar 

  26. Nicoletti, M., Loppini, A., Chiodo, L., Folli, V., Ruocco, G., Filippi, S.: Biophysical modeling of C. elegans neurons: single ion currents and whole-cell dynamics of AWCon and RMD. PLoS ONE 14(7), e0218738 (2019)

    Article  Google Scholar 

  27. Piggott, B.J., Liu, J., Feng, Z., Wescott, S.A., Xu, X.S.: The neural circuits and synaptic mechanisms underlying motor initiation in C. elegans. Cell 147(4), 922–933 (2011)

    Article  Google Scholar 

  28. Salkoff, L.B., et al.: Potassium channels in c. elegans. WormBook (2005)

    Google Scholar 

  29. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  30. Venkadesh, S., et al.: Evolving simple models of diverse intrinsic dynamics in hippocampal neuron types. Front. Neuroinform. 12, 8 (2018)

    Article  Google Scholar 

  31. Wilcoxon, F.: Individual comparisons by ranking methods. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in Statistics, pp. 196–202. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-4380-9_16

    Chapter  Google Scholar 

  32. Wittkowski, K.M.: Friedman-type statistics and consistent multiple comparisons for unbalanced designs with missing data. J. Am. Stat. Assoc. 83(404), 1163–1170 (1988)

    Article  MathSciNet  Google Scholar 

  33. Wojtovich, A.P., DiStefano, P., Sherman, T., Brookes, P.S., Nehrke, K.: Mitochondrial ATP-sensitive potassium channel activity and hypoxic preconditioning are independent of an inwardly rectifying potassium channel subunit in caenorhabditis elegans. FEBS Lett. 586(4), 428–434 (2012)

    Article  Google Scholar 

  34. Zheng, M., Cao, P., Yang, J., Xu, X.S., Feng, Z.: Calcium imaging of multiple neurons in freely behaving C. elegans. J. Neurosci. Methods 206(1), 78–82 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Luis Jiménez Laredo .

Editor information

Editors and Affiliations

Appendices

Appendix A Mathematical Description of the Models

figure a
Table 3. Characterization of all the mathematical models used in this paper as described in [23].

Appendix B Experimental Setup and Parameter Ranges

See Tables 4 and 5.

Table 4. Differential evolution parameters as in [23].
Table 5. Parameter ranges have been obtained from the literature [20] to be biologically relevant.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiménez Laredo, J.L., Naudin, L., Corson, N., Fernandes, C.M. (2022). A Methodology for Determining Ion Channels from Membrane Potential Neuronal Recordings. In: Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds) Applications of Evolutionary Computation. EvoApplications 2022. Lecture Notes in Computer Science, vol 13224. Springer, Cham. https://doi.org/10.1007/978-3-031-02462-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02462-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02461-0

  • Online ISBN: 978-3-031-02462-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics