Skip to main content

Explainable Landscape Analysis in Automated Algorithm Performance Prediction

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2022)

Abstract

Predicting the performance of an optimization algorithm on a new problem instance is crucial in order to select the most appropriate algorithm for solving that problem instance. For this purpose, recent studies learn a supervised machine learning (ML) model using a set of problem landscape features linked to the performance achieved by the optimization algorithm. However, these models are black-box with the only goal of achieving good predictive performance, without providing explanations which landscape features contribute the most to the prediction of the performance achieved by the optimization algorithm. In this study, we investigate the expressiveness of problem landscape features utilized by different supervised ML models in automated algorithm performance prediction. The experimental results point out that the selection of the supervised ML method is crucial, since different supervised ML regression models utilize the problem landscape features differently and there is no common pattern with regard to which landscape features are the most informative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blot, A., Marmion, M., Jourdan, L., Hoos, H.H.: Automatic configuration of multi-objective local search algorithms for permutation problems. Evol. Comput. 27(1), 147–171 (2019). https://doi.org/10.1162/evco_a_00240

    Article  Google Scholar 

  2. Eftimov, T., Jankovic, A., Popovski, G., Doerr, C., Korošec, P.: Personalizing performance regression models to black-box optimization problems. arXiv preprint arXiv:2104.10999 (2021)

  3. Eftimov, T., Popovski, G., Renau, Q., Korošec, P., Doerr, C.: Linear matrix factorization embeddings for single-objective optimization landscapes. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 775–782. IEEE (2020)

    Google Scholar 

  4. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., Brockhoff, D.: COCO: a platform for comparing continuous optimizers in a black-box setting. Optim. Methods Softw. 36, 1–31 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning. TSSCML, Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5

    Book  Google Scholar 

  6. Jankovic, A., Doerr, C.: Landscape-aware fixed-budget performance regression and algorithm selection for modular CMA-ES variants. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2020), pp. 841–849. ACM (2020). https://doi.org/10.1145/3377930.3390183

  7. Jankovic, A., Doerr, C.: Landscape-aware fixed-budget performance regression and algorithm selection for modular CMA-ES variants. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 841–849 (2020)

    Google Scholar 

  8. Jankovic, A., Eftimov, T., Doerr, C.: Towards feature-based performance regression using trajectory data. In: Castillo, P.A., Jiménez Laredo, J.L. (eds.) EvoApplications 2021. LNCS, vol. 12694, pp. 601–617. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72699-7_38

    Chapter  Google Scholar 

  9. Jankovic, A., Popovski, G., Eftimov, T., Doerr, C.: The impact of hyper-parameter tuning for landscape-aware performance regression and algorithm selection. arXiv preprint arXiv:2104.09272 (2021)

  10. Kerschke, P., Trautmann, H.: Automated algorithm selection on continuous black-box problems by combining exploratory landscape analysis and machine learning. Evol. Comput. 27(1), 99–127 (2019). https://doi.org/10.1162/evco_a_00236

    Article  Google Scholar 

  11. Kerschke, P., Dagefoerde, J., Kerschke, M.P.: Package ‘flacco’ (2017)

    Google Scholar 

  12. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019)

    Article  Google Scholar 

  13. Lang, R.D., Engelbrecht, A.P.: An exploratory landscape analysis-based benchmark suite. Algorithms 14(3), 78 (2021)

    Article  MathSciNet  Google Scholar 

  14. Liefooghe, A., Daolio, F., Vérel, S., Derbel, B., Aguirre, H.E., Tanaka, K.: Landscape-aware performance prediction for evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 24(6), 1063–1077 (2020). https://doi.org/10.1109/TEVC.2019.2940828

    Article  Google Scholar 

  15. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30, pp. 4765–4774. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

  16. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 829–836 (2011)

    Google Scholar 

  17. de Nobel, J., Vermetten, D., Wang, H., Doerr, C., Bäck, T.: Tuning as a means of assessing the benefits of new ideas in interplay with existing algorithmic modules. CoRR abs/2102.12905 (2021). https://arxiv.org/abs/2102.12905

  18. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Renau, Q., Doerr, C., Dreo, J., Doerr, B.: Exploratory landscape analysis is strongly sensitive to the sampling strategy. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12270, pp. 139–153. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58115-2_10

    Chapter  Google Scholar 

  20. Renau, Q., Dreo, J., Doerr, C., Doerr, B.: Towards explainable exploratory landscape analysis: extreme feature selection for classifying BBOB functions. In: Castillo, P.A., Jiménez Laredo, J.L. (eds.) EvoApplications 2021. LNCS, vol. 12694, pp. 17–33. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72699-7_2

    Chapter  Google Scholar 

  21. Škvorc, U., Eftimov, T., Korošec, P.: The effect of sampling methods on the invariance to function transformations when using exploratory landscape analysis. In: 2021 IEEE Congress on Evolutionary Computation (CEC), pp. 1139–1146. IEEE (2021)

    Google Scholar 

  22. Trajanov, R., Dimeski, S., Popovski, M., Korošec, P., Eftimov, T.: Explainable landscape-aware optimization performance prediction. arXiv preprint arXiv:2110.11633 (2021)

  23. Trajanov, R., Dimeski, S., Popovski, M., Korošec, P., Eftimov, T.: GitHub repository containing all source code and data of the study presented in this paper (2021). https://github.com/risto-trajanov/explainable-landscape-aware-performance-regression

  24. Xu, Q., Yang, Y., Liu, Y., Wang, X.: An improved Latin hypercube sampling method to enhance numerical stability considering the correlation of input variables. IEEE Access 5, 15197–15205 (2017)

    Article  Google Scholar 

  25. Škvorc, U., Eftimov, T., Korošec, P.: Understanding the problem space in single-objective numerical optimization using exploratory landscape analysis. Appl. Soft Comput. 90, 106138 (2020). https://doi.org/10.1016/j.asoc.2020.106138. https://www.sciencedirect.com/science/article/pii/S1568494620300788

Download references

Acknowledgments

This work was supported by projects from the Slovenian Research Agency: research core funding No. P2-0098 and projects No. Z2-1867 and N2-0239.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tome Eftimov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trajanov, R., Dimeski, S., Popovski, M., Korošec, P., Eftimov, T. (2022). Explainable Landscape Analysis in Automated Algorithm Performance Prediction. In: Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds) Applications of Evolutionary Computation. EvoApplications 2022. Lecture Notes in Computer Science, vol 13224. Springer, Cham. https://doi.org/10.1007/978-3-031-02462-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02462-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02461-0

  • Online ISBN: 978-3-031-02462-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics