Skip to main content

Interactive Learning for Assisting Whole Slide Image Annotation

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13189))

Included in the following conference series:

  • 915 Accesses

Abstract

Owing to the large dimensions of the histopathology whole slide images (WSI), visually searching for clinically significant regions (patches) is a tedious task for a medical expert. Sequential analysis of several such images further increases the workload resulting in poor diagnosis. A major impediment towards automating this task using deep learning models is that it requires a huge chunk of laboriously annotated data in the form of WSI patches. Our work suggests a novel CNN-based, expert feedback-driven interactive learning technique to mitigate this issue. The proposed method seeks to acquire labels of the most informative patches in small increments with multiple feedback rounds to maximize the throughput. It requires the expert to query a patch of interest from one slide and provide feedback to a set of unlabelled patches chosen using the proposed sampling strategy from a ranked list. The experiments on a large patient cohort of colorectal cancer histological patches (100K images with nine classes of tissues) show a significant reduction (\(\approx 95\%\)) in the amount of labelled data required to achieve state-of the-art results when compared to other existing interactive learning methods (35%–50%). We also demonstrate the utility of the proposed technique to assist a WSI tumor segmentation annotation task using the ICIAR breast cancer challenge dataset (\(\approx 12.5\)K patches per slide). The proposed technique reduces the scanning and searching area to about \(2\%\) of the total area of WSI (by seeking labels of \(\approx 250\) informative patches only) and achieves segmentation outputs with \(85\%\) IOU. Thus our work helps avoid the routine procedure of exhaustive scanning and searching during annotation and diagnosis in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aeffner, F., et al.: Commentary: roles for pathologists in a high-throughput image analysis team. Toxicologic Pathol. 44(6), 825–34 (2016)

    Article  Google Scholar 

  2. Bándi, P., et al.: From detection of individual metastases to classification of Lymph node status at the patient level: The CAMELYON17 challenge. IEEE Trans. Med. Imaging 38, 550–560 (2019)

    Article  Google Scholar 

  3. Bejnordi, B.E., et al.: Diagnostic assessment of deep learning algorithms for detection of Lymph node metastases in women with Breast Cancer. JAMA 318, 2199–2210 (2017)

    Article  Google Scholar 

  4. Cho, S., et al.: DeepScribble: interactive pathology image segmentation using deep neural networks with scribbles. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 761–765 (2021)

    Google Scholar 

  5. Coudray, N., et al.: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24(10), 1559–1567 (2018)

    Article  Google Scholar 

  6. Jeelani, S., et al.: Histopathological examination of nail clippings using PAS staining (HPE-PAS): gold standard in diagnosis of Onychomycosis. Mycoses 58, 27–32 (2015)

    Article  Google Scholar 

  7. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. arXiv preprint arXiv:1702.08734 (2017)

  8. Kather, J.N., et al.: Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study. PLoS Med. 16(1), e1002730 (2019)

    Article  Google Scholar 

  9. Kather, J.N., Halama, N., Marx, A.: 100,000 histological images of human colorectal cancer and healthy tissue. Version v0.1, April 2018. https://doi.org/10.5281/zenodo.1214456

  10. Kather, D.J.N., et al.: Collection of textures in colorectal cancer histology, May 2016. https://doi.org/10.5281/zenodo.53169

  11. Li, H., Yin, Z.: Attention, suggestion and annotation: a deep active learning framework for biomedical image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 3–13. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_1

    Chapter  Google Scholar 

  12. Li, W., et al.: Path R-CNN for prostate cancer diagnosis and Gleason grading of histological images. IEEE Trans. Med. Imaging 38, 945–954 (2019)

    Article  Google Scholar 

  13. Liao, H., et al.: Deep learning-based classification and mutation prediction from histopathological images of hepatocellular carcinoma. Clin. Transl. Med. 10, e102 (2020)

    Article  Google Scholar 

  14. Lindvall, M., et al.: TissueWand, a rapid histopathology annotation tool. J. Pathol. Inform. 11, 27 (2020)

    Article  Google Scholar 

  15. Musgrave, K., Belongie, S., Lim, S.-N.: PyTorch metric learning. arXiv: 2008.09164 [cs.CV] (2020)

  16. Nalisnik, M., et al.: Interactive phenotyping of large-scale histology imaging data with HistomicsML. Sci. Rep. 7, 14588 (2017)

    Article  Google Scholar 

  17. Peng, T., Boxberg, M., Weichert, W., Navab, N., Marr, C.: Multi-task learning of a deep K-nearest neighbour network for histopathological image classification and retrieval. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 676–684. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_75

    Chapter  Google Scholar 

  18. Polónia, A., Eloy, C., Aguiar, P.: BACH dataset: grand challenge on breast cancer histology images. Med. Image Anal. 56, 122–139 (2019). https://doi.org/10.5281/zenodo.3632035

    Article  Google Scholar 

  19. Putzu, L., Piras, L., Giacinto, G.: Convolutional neural networks for relevance feedback in content based image retrieval. Multimedia Tools Appl. 79, 26995–27021 (2020)

    Article  Google Scholar 

  20. Raczkowski, Ł, et al.: ARA: accurate, reliable and active histopathological image classification framework with Bayesian deep learning. Sci. Rep. 9, 14347 (2019)

    Article  Google Scholar 

  21. Sardanelli, F., et al.: Sensitivity of MRI versus mammography for detecting foci of multifocal, multicentric breast cancer in Fatty and dense breasts using the whole-breast pathologic examination as a gold standard. AJR Am J. Roentgenol. 183(4), 1149–57 (2004)

    Article  Google Scholar 

  22. Shaban, M., et al.: Context-aware convolutional neural network for grading of colorectal cancer histology images. IEEE Trans. Med. Imaging 39, 2395–2405 (2020)

    Article  Google Scholar 

  23. Shen, Y., Ke, J.: Representative region based active learning for histological classification of colorectal cancer. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1730–1733 (2021)

    Google Scholar 

  24. Tabibu, S., Vinod, P.K., Jawahar, C.: Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning. Sci. Rep. 9, 10509 (2019)

    Article  Google Scholar 

  25. Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D.Z.: Suggestive annotation: a deep active learning framework for biomedical image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 399–407. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_46

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank IHub-Data, International Institute of Information and Technology, Hyderabad for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Menon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Menon, A., Singh, P., Vinod, P.K., Jawahar, C.V. (2022). Interactive Learning for Assisting Whole Slide Image Annotation. In: Wallraven, C., Liu, Q., Nagahara, H. (eds) Pattern Recognition. ACPR 2021. Lecture Notes in Computer Science, vol 13189. Springer, Cham. https://doi.org/10.1007/978-3-031-02444-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02444-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02443-6

  • Online ISBN: 978-3-031-02444-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics