Skip to main content

Neurochips: An Ethical Consideration

  • Chapter
  • First Online:
Learning and Career Development in Neurosurgery

Abstract

A neurochip comprises a small device based on the brain–machine interfaces (BMI) that emulates the functioning synapses. Its implant in the human body allows the interaction of the brain with a computer. Although the data-processing speed is still slower than that of the human brain, they are being developed. There is no ethical conflict as long as it is used for neural rehabilitation or to supply impaired or missing neurological functions. However, other applications emerge as controversial.

Deliberation on neurochips is primarily limited to a small circle of scholars such as neurotechnological engineers, artists, philosophers, and bioethicists. Why do we address neurosurgeons? They will be directly involved as they could be required to perform invasive procedures.

Future neurosurgeons will have to be a different type of neurosurgeon. They will be part of interdisciplinary teams interacting with computer engineers, neurobiologist, and ethicists. Although a neurosurgeon is not expected to be an expert in all areas, they have to be familiar with them; they have to be prepared to determine indications, contraindications, and risks of the procedures, participating in the decision-making processes, and even collaborating in the design of devices in order to preserve anatomic structures. Social, economic, and legal aspects are also inherent to the neurosurgical activity; therefore, these aspects should also be considered.

The neurosurgical societies, and the directors of training programs, should start to prepare young doctors to anticipate these kind of neuroethical issues. Perhaps, the neurosurgical community, even in collaboration with the WHO (World Health Organization) and PAHO (Pan American Health Organization), should anticipate worldwide ethical recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Dana Foundation. Neuroethics: mapping the field. Cerebrum. http://www.dana.org/Cerebrum/2002/Neuroethics__Mapping_the_Field/. Accessed 1 Dec 2020

  2. Northoff G. What is neuroethics? Empirical and theoretical neuroethics. Curr Opin Psychiatry. 2009;22:565–9.

    Article  Google Scholar 

  3. Suslow T, Kugel H, Reber H, Bauer J, Dannlowski U, Kersting A, Arolt V, Heindel W, Ohrmann P, Egloff B. Automatic brain response to facial emotion as a function of implicitly and explicitly measured extraversion. Neuroscience. 2010;167(1):111–23. https://doi.org/10.1016/j.neuroscience.2010.01.038.

    Article  CAS  PubMed  Google Scholar 

  4. Duan X, Dai Q, Gong Q, Chen H. Neural mechanism of unconscious perception of surprised facial expression. Neuroimage. 2010;52(1):401–7. https://doi.org/10.1016/j.neuroimage.2010.04.021.

    Article  PubMed  Google Scholar 

  5. Grill JD, et al. A survey of attitudes toward clinical trials and genetic disclosure in autosomal dominant Alzheimer’s disease. Alzheimers Res Ther. 2015;7:50.

    Article  Google Scholar 

  6. Cabrera LY, Evans EL, Hamilton RH. Ethics of the electrified mind: defining issues and perspectives on the principled use of brain stimulation in medical research and clinical care. Brain Topogr. 2014;27:33–45.

    Article  Google Scholar 

  7. Cabrera LY. How does enhancing cognition affect human values? How does this translate into social responsibility. Curr Top Behav Neurosci. 2015;19(223–41):5.

    Google Scholar 

  8. Hayempour BJ. Psychosurgery: treating neurobiological disorders with neurosurgical intervention. J Neurol Disord. 2013;19:1.

    Google Scholar 

  9. Iuculano T, Cohen KR. The mental cost of cognitive enhancement. J Neurosci. 2013;33:4482–6. [PMCID: PMC3672974] [PubMed: 23467363].

    Article  CAS  Google Scholar 

  10. Rabadán AT. Neuroethics scope at a glance. Surg Neurol Int. 2015;6:183.

    Article  Google Scholar 

  11. Shaw D. Neuroenhancing public health. J Med Ethics. 2014;40(6):389–91.

    Article  Google Scholar 

  12. De Luca M, Olesen J. Neuron. 2014;82(82):1205–8.

    Google Scholar 

  13. Olesen J, Gustavsson A, Svensson M, Wittchen HU, Jönsson B, CDBE2010 Study Group; European Brain Council. The economic cost of brain disorders in Europe. Eur J Neurol. 2012;19(1):155–62.

    Article  CAS  Google Scholar 

  14. Rabadan AT. Chapter 1: Horizonte de la Neuroética: Una nueva forma del saber. In: Desafíos bioéticos en neurociencias del siglo XXI: El presente y el futuro. Buenos Aires: Editorial Journal; 2021. p. 3–15.

    Google Scholar 

  15. Musk E, Neuralink. An integrated brain-machine interface platform with thousands of channels. J Med Internet Res. 2019;21(10):e16194. https://doi.org/10.2196/16194).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chua LO. Memristor—the missing circuit element. IEEE Trans Circuit Theory. 1971;18(5):507–19. https://doi.org/10.1109/TCT.1971.1083337.

    Article  Google Scholar 

  17. Widrow B. An adaptative “Adaline” neuron using chemical memristors. Univ Stanford. Technical report 1960;n° 1553–2.

    Google Scholar 

  18. Chicca E, Indiveri G. A recipe for creating ideal hybrid memristive-CMOS neuromorphic computing systems. Appl Phys Lett. 2020;116(12):120501. https://aip.scitation.org/doi/10.1063/1.5142089.

    Article  CAS  Google Scholar 

  19. Kim GS, Han JS, Kim H, Kim SY, Jang HW. Recent advances in memristive materials for artificial synapses. Adv Mater Technol. 2018;3:1800457. Review 1800457 (1 of 30) © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.advmattechnol.de.)

    Article  Google Scholar 

  20. Wang FZ, Chua LO, Yang X, et al. Adaptive neuromorphic architecture (ANA). Neural Netw. 2013;45:111–6. https://doi.org/10.1016/j.neunet.2013.02.009.

    Article  PubMed  Google Scholar 

  21. Atkin K. An introduction to the memristor. Phys Educ. 2013;48:317. https://doi.org/10.1088/0031-9120/48/3/317.

    Article  Google Scholar 

  22. Prodromakis T, Toumazou C, Chua L. Two centuries of memristors. Nat Mater. 2012;11(6):478–81.

    Article  CAS  Google Scholar 

  23. Shuopei W, Congli H, Jian T, Rong Y, Dongxia S, Guangyu Z. Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor. Chin Phys B. 2019;28(1):017304.

    Article  Google Scholar 

  24. Keogh C. Optimizing the neuron-electrode interface for chronic bioelectronic interfacing. Neurosurg Focus. 2020;49(1):E7.

    Article  Google Scholar 

  25. Klein E. Neuromodulation ethics: preparing for brain-computer interface medicine. In: Neuroethics. Anticipating the future. Oxford: Oxford University Press; 2017. p. 122–39.

    Google Scholar 

  26. Luo YH-L, da Cruz L. The Argus® II retinal prosthesis system. Prog Retin Eye Res. 2016;50:89–107. https://doi.org/10.1016/j.preteyeres.2015.09.003).

    Article  PubMed  Google Scholar 

  27. Miller KJ, Hermeds D, Staff NP. The current state of electrocorticography-based-brain-computer interfaces. Neurosurg Focus. 2020;49(1):E2.

    Article  Google Scholar 

  28. Service RF. The brain chips. Science. 2014;345(6197):614–6. https://doi.org/10.1126/science.345.6197.614).

    Article  PubMed  Google Scholar 

  29. Raza SA, Opie NL, Morokoff A, Sharma RP, Mitchell PJ, Oxley TJ. Endovascular neuromodulation: safety profile and future directions. Front Neurol. 2020;11(351). Published 2020 Apr 24 https://doi.org/10.3389/fneur.2020.00351).

  30. Oxley TJ, Opie NL, John SE, et al. Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nat Biotechnol. 2016;34(3):320–7.

    Article  CAS  Google Scholar 

  31. Collinger JL, Wodlinger B, Downey JE. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013;381:557–64.

    Article  Google Scholar 

  32. Deng ZD, McClintock SM, Oey NE, Luber B, Lisanby SH. Neuromodulation for mood and memory: from the engineering bench to the patient bedside. Curr Opin Neurobiol. 2015;30:38–43.

    Article  CAS  Google Scholar 

  33. Fins JJ. From psychosurgery to neuromodulation and palliation: history’s lessons for the ethical conduct and regulation of neuropsychiatric research. Neurosurg Clin N Am. 2003;14:303–19.

    Article  Google Scholar 

  34. Mayberg HS, Lozano AM, Voon V, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2004;5:651–60.

    Google Scholar 

  35. Monti MM, Vanhaudenhuyse A, Coleman MR. Willfull modulation of brain activity in disorders of consciousness. N Engl J Med. 2010;362:579–89.

    Article  CAS  Google Scholar 

  36. Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD. Detecting awareness in the vegetative state. Science. 2006;313:1402.

    Article  CAS  Google Scholar 

  37. House WF. Cochlear implants. Annals of Otology, Rhinology & Laryngology. 1976;85(3_suppl):3–3. https://doi.org/10.1177/00034894760850s303.

    Article  Google Scholar 

  38. Teunisse W, Youssef S, Schmidt M. Human enhancement through the lens of experimental and speculative neurotechnologies. Hum Behav Emerg Technol. 2019;1(4):361–72. https://doi.org/10.1002/hbe2.179.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Garcia G. The woman who can feel every earthquake in the world. 2015. http://www.hopesandfears.com/hopes/future/technology/216729-the-woman-who-can-feel-every-earthquakein-the-world.html.

  40. Jeffries S. Neil Harbisson: the world’s first cyborg artist. The Guardian. https://www.theguardian.com/artanddesign/2014/may/06/neil-harbisson-worlds-first-cyborg-artist.

  41. Reddit. r/tDCS. 2019. https://www.reddit.com/r/tDCS/.

  42. Scherner M. Health, happiness and human enhancement dealing with unexpected effects of deep brain stimulation. Neuroethics. 2013;6:435–45.

    Article  Google Scholar 

  43. Wexler A. The social context of “do-it-yourself” brain stimulation: neurohackers, biohackers, and lifehackers. Front Hum Neurosci. 2017;11(224):1–6. https://doi.org/10.3389/fnhum.2017.00224.

    Article  Google Scholar 

  44. Chertok B, Webber MJ, Succi MD, Langer RS. Drug delivery interfaces in the 21st century: from science fiction ideas to viable technologies. Mol Pharm. 2013;10(10):3531–43. https://doi.org/10.1021/mp4003283.

    Article  CAS  PubMed  Google Scholar 

  45. Ding S, O’Banion CP, Welfare JG, Lawrence DS. Cellular cyborgs: on the precipice of a drug delivery revolution. Cell Chem Biol. 2018;25(6):648–58. https://doi.org/10.1016/j.chembiol.2018.03.003.

    Article  CAS  PubMed  Google Scholar 

  46. Rabadán AT. Neurochips: considerations from a neurosurgeon’s standpoint. Surg Neurol Int. 2021;12:173.

    Article  Google Scholar 

  47. Wardrope A. Authenticity and autonomy in deep-brain stimulation. J Med Ethics. 2014;40:563–6.

    Article  Google Scholar 

  48. Greif H. What is the extension of the extended mind? Synthese. 2017;194(11):4311–36. https://doi.org/10.1007/s11229-015-0799-9.

    Article  PubMed  Google Scholar 

  49. Gillett G. Cyborgs and moral identity. J Med Ethics. 2006;32(2):79–83. https://doi.org/10.1136/jme.2005.012583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rabadán AT. Horizonte de la inteligencia artificial y neurociencias. Acerca de robots, androides y cyborgs. Medicina (B Aires). 2019;79(5):397–400.

    Google Scholar 

  51. Rabadan AT. Chapter 7. Interfaz cerebro-computadora. Acerca de androides y cyborgs. In: Desafíos bioéticos en neurociencias del siglo XXI: El presente y el futuro. Buenos Aires: Edit Journal. pp 67–79.

    Google Scholar 

  52. Warwick K, Shah H. Passing the Turing test does not mean the end of humanity. Cogn Comput. 2016;8:409–19. https://doi.org/10.1007/s12559-015-9372-6.

    Article  Google Scholar 

  53. Bianchi DW, Cooper JA, Gordon JA, Heemskerk J, Hodes R, Koob GF, Koroshetz WJ, Shurtleff D, Sieving PA, Volkow ND, Churchill JD, Ramos KM. Neuroethics for the National Institutes of Health BRAIN initiative. J Neurosci. 2018;38(50):10583–5.

    Article  CAS  Google Scholar 

  54. Brain Initiative (Brain Research through Advancing Innovative Technologies). 2013. http://braininitiative.nih.gov) (Human Brain Project. 2013. In: http://www.humanbrainproject.eu

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Ammar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rabadán, A.T., Ammar, A. (2022). Neurochips: An Ethical Consideration. In: Ammar, A. (eds) Learning and Career Development in Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-031-02078-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02078-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02077-3

  • Online ISBN: 978-3-031-02078-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics