Abstract
Dynamic job shop scheduling has a wide range of applications in reality such as order picking in warehouse. Using genetic programming to design scheduling heuristics for dynamic job shop scheduling problems becomes increasingly common. In recent years, multitask genetic programming-based hyper-heuristic methods have been developed to solve similar dynamic scheduling problem scenarios simultaneously. However, all of the existing studies focus on the tree-based genetic programming. In this paper, we investigate the use of linear genetic programming, which has some advantages over tree-based genetic programming in designing multitask methods, such as building block reusing. Specifically, this paper makes a preliminary investigation on several issues of multitask linear genetic programming. The experiments show that the linear genetic programming within multitask frameworks have a significantly better performance than solving tasks separately, by sharing useful building blocks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al-Sahaf, H., et al.: A survey on evolutionary machine learning. J. R. Soc. N. Z. 49(2), 205–228 (2019)
Ardeh, M.A., Mei, Y., Zhang, M.: A novel multi-task genetic programming approach to uncertain capacitated Arc routing problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 759–767 (2021)
Brameier, M., Banzhaf, W.: A comparison of linear genetic programming and neural networks in medical data mining. IEEE Trans. Evol. Comput. 5(1), 17–26 (2001)
Brameier, M., Banzhaf, W.: Linear Genetic Programming, vol. 53. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-31030-5
Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M.: Automated design of production scheduling heuristics: a review. IEEE Trans. Evol. Comput. 20(1), 110–124 (2016)
Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A classification of hyper-heuristic approaches: revisited. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 453–477. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91086-4_14
Chandra, R., Ong, Y.S., Goh, C.K.: Co-evolutionary multi-task learning for dynamic time series prediction. Appl. Soft Comput. J. 70, 576–589 (2018)
Dal Piccol Sotto, L.F., De Melo, V.V.: A probabilistic linear genetic programming with stochastic context-free grammar for solving symbolic regression problems. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1017–1024 (2017)
Downey, C., Zhang, M., Liu, J.: Parallel linear genetic programming for multi-class classification. Genet. Program Evolvable Mach. 13(3), 275–304 (2012). https://doi.org/10.1007/s10710-012-9162-9
Gupta, A., Ong, Y.S., Feng, L.: Multifactorial evolution: toward evolutionary multitasking. IEEE Trans. Evol. Comput. 20(3), 343–357 (2016)
Huang, S., Zhong, J., Yu, W.J.: Surrogate-assisted evolutionary framework with adaptive knowledge transfer for multi-task optimization. IEEE Trans. Emerg. Top. Comput. 9(4), 1930–1944 (2019)
Kantschik, W., Banzhaf, W.: Linear-tree GP and its comparison with other GP structures. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tettamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 302–312. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45355-5_24
Koza, J.R.: Genetic programming as a means for programming computers by natural selection. Stat. Comput. 4(2), 87–112 (1994). https://doi.org/10.1007/BF00175355
Nguyen, S., Mei, Y., Zhang, M.: Genetic programming for production scheduling: a survey with a unified framework. Complex Intell. Syst. 3(1), 41–66 (2017). https://doi.org/10.1007/s40747-017-0036-x
Nguyen, S., Zhang, M., Tan, K.C.: Surrogate-assisted genetic programming with simplified models for automated design of dispatching rules. IEEE Trans. Cybern. 47(9), 2951–2965 (2017)
Park, J., Mei, Y., Nguyen, S., Chen, G., Zhang, M.: Evolutionary multitask optimisation for dynamic job shop scheduling using niched genetic programming. In: Mitrovic, T., Xue, B., Li, X. (eds.) AI 2018. LNCS (LNAI), vol. 11320, pp. 739–751. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03991-2_66
Provorovs, S., Borisov, A.: Use of linear genetic programming and artificial neural network methods to solve classification task. Sci. J. Riga Tech. Univ. Comput. Sci. 45(1), 133–139 (2012)
Sanchez, M., Cruz-Duarte, J.M., Ortiz-Bayliss, J.C., Ceballos, H., Terashima-Marin, H., Amaya, I.: A systematic review of hyper-heuristics on combinatorial optimization problems. IEEE Access 8, 128068–128095 (2020)
Wilson, G., Banzhaf, W.: A comparison of cartesian genetic programming and linear genetic programming. In: O’Neill, M., et al. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 182–193. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78671-9_16
Xu, Q., Wang, N., Wang, L., Li, W., Sun, Q.: Multi-task optimization and multi-task evolutionary computation in the past five years: a brief review. Mathematics 9(8), 1–44 (2021)
Yi, J., Bai, J., He, H., Zhou, W., Yao, L.: A multifactorial evolutionary algorithm for multitasking under interval uncertainties. IEEE Trans. Evol. Comput. 24(5), 908–922 (2020)
Zhang, F., Mei, Y., Nguyen, S., Tan, K.C., Zhang, M.: Multitask genetic programming-based generative hyperheuristics: a case study in dynamic scheduling. IEEE Trans. Cybern. 1–14 (2021). https://doi.org/10.1109/TCYB.2021.3065340
Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: A preliminary approach to evolutionary multitasking for dynamic flexible job shop scheduling via genetic programming. In: Proceedings of Genetic and Evolutionary Computation Conference Companion, pp. 107–108 (2020)
Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Collaborative multifidelity-based surrogate models for genetic programming in dynamic flexible job shop scheduling. IEEE Trans. Cybern. 1–15 (2021). https://doi.org/10.1109/TCYB.2021.3050141
Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Correlation coefficient-based recombinative guidance for genetic programming hyperheuristics in dynamic flexible job shop scheduling. IEEE Trans. Evol. Comput. 25(3), 552–566 (2021)
Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Evolving scheduling heuristics via genetic programming with feature selection in dynamic flexible job-shop scheduling. IEEE Trans. Cybern. 51(4), 1797–1811 (2021)
Zhang, F., Mei, Y., Nguyen, S., Zhang, M., Tan, K.C.: Surrogate-assisted evolutionary multitasking genetic programming for dynamic flexible job shop scheduling. IEEE Trans. Evol. Comput. 25(4), 651–665 (2021)
Zhang, F., Nguyen, S., Mei, Y., Zhang, M.: Genetic Programming for Production Scheduling - An Evolutionary Learning Approach. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-4859-5
Zhou, L., Feng, L., Zhong, J., Ong, Y.S., Zhu, Z., Sha, E.: Evolutionary multitasking in combinatorial search spaces: a case study in capacitated vehicle routing problem. In: IEEE Symposium Series on Computational Intelligence (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Huang, Z., Zhang, F., Mei, Y., Zhang, M. (2022). An Investigation of Multitask Linear Genetic Programming for Dynamic Job Shop Scheduling. In: Medvet, E., Pappa, G., Xue, B. (eds) Genetic Programming. EuroGP 2022. Lecture Notes in Computer Science, vol 13223. Springer, Cham. https://doi.org/10.1007/978-3-031-02056-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-02056-8_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-02055-1
Online ISBN: 978-3-031-02056-8
eBook Packages: Computer ScienceComputer Science (R0)