Skip to main content

Low Light Image Enhancement on Mobile Devices by Using Dehazing

  • 107 Accesses

Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST,volume 436)

Abstract

The images which are captured in indoors and/or outdoors may be badly impacted when sufficient light does not exist. The pictures’ low dynamic range and high noise levels may have an impact on the overall success of computer vision systems. Computer vision applications become more powerful in low light situations when low light picture augmentation approaches are used to boost image visibility. Low light photos have a histogram that is very similar to hazy photographs. As a result, haze reduction techniques can be utilized to increase low light photo contrast. An image improvement approach based on inverting low lighting images and applying picture dehazing with an atmospheric light scattering model is suggested in this paper. The suggested technique has been implemented on the Android operating system. The proposed method delivers about 3 frames per second for 360p video on the Android operating system. It is extremely feasible to increase this real-time performance by employing more powerful hardware.

Keywords

  • Dynamic range
  • Poor vision
  • Clear image
  • Light

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-01984-5_5
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-01984-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

References

  1. Wang, W., Yuan, X.: Recent advances in image dehazing. IEEE/CAA J. Auto. Sin. 4(3), 410–436 (2017)

    MathSciNet  CrossRef  Google Scholar 

  2. Pandey, A.K., et al.: Investigating the role of global histogram equalization technique for 99m technetium-methylene diphosphonate bone scan image enhancement. Ind. J. Nucl. Med. 32(4), 283–288 (2017)

    CrossRef  Google Scholar 

  3. Chien, S., Chang, F., Hua, K., Chen, I., Chen, Y.: Contrast enhancement by using global and local histogram information jointly. In: International Conference on Advanced Robotics and Intelligent Systems (ARIS), pp. 75–75. IEEE, Taipei, Taiwan (2017)

    Google Scholar 

  4. Hussain, K., Rahman, S., Rahman, M.M., et al: A histogram specification technique for dark image enhancement using a local transformation method. IPSJ T Comput. Vision Appl. 10(3), (2018)

    Google Scholar 

  5. Min, Y., Changming, Z.: Study and comparison on histogram-based local image enhancement methods. In: 2nd International Conference on Image, Vision and Computing (ICIVC), pp. 309–314. IEEE, Chengdu, China (2017)

    Google Scholar 

  6. Yoon, J., Choe, Y.: Retinex based image enhancement via general dictionary convolutional sparse coding. Appl. Sci. 10(12), 439 (2020)

    Google Scholar 

  7. Wang, S., Zheng, J., Hu, H.-M., Li, B.: Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 22(9), 3538–3548 (2013)

    CrossRef  Google Scholar 

  8. Fu, X., Zeng, D., Huang, Y., Liao, X., Ding, X., Paisley J.: A fusion-based enhancing method for weakly illuminated images. Signal Process. 129, 82–96 (2016)

    Google Scholar 

  9. Zijun, G., Chao, W.: Low light image enhancement algorithm based on retinex and dehazing model. In: 6th International Conference on Robotics and Artificial Intelligence (ICRAI), pp. 84–90. Association for Computing Machinery, New York, USA (2020)

    Google Scholar 

  10. Dong, X., et al.: Fast efficient algorithm for enhancement of low lighting video. In: Proceedings of IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE, Barcelona, Spain (2011)

    Google Scholar 

  11. Rahman, S., et al.: An adaptive gamma correction for image enhancement. EURASIP J. Image Video Process. 2016, 35 (2016)

    Google Scholar 

  12. Lore, K.G., Akintayo, A., Sarkar, S.: Llnet: a deep autoencoder approach to natural low light image enhancement. Pattern Recogn. 61, 650–662 (2017)

    CrossRef  Google Scholar 

  13. Zhang, Y., Zhang, J., Guo, X.: Kindling the darkness: a practical low light image enhancer. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1632–1640. ACM, Nice, France (2019)

    Google Scholar 

  14. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision (ICCV). IEEE, Venice, Italy (2017)

    Google Scholar 

  15. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: 31st Conference on Neural Information Processing Systems (NIPS), pp. 700–708. ACM, Long Beach, CA, USA (2018)

    Google Scholar 

  16. Kaiming, H., Jian, S., Xiaoou, T.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)

    CrossRef  Google Scholar 

  17. Navinprashath, R.: Real time enhancement of low light images for low cost embedded platforms. Image Sens. Image. Syst. 4(4), 361–1–361 (2019).

    Google Scholar 

  18. Datasheet. https://www.ti.com/lit/ds/symlink/tda3la.pdf?ts=1640100257206. Accessed 22 Dec 2022

  19. Tian, S., Tian, Y., Jue, J.: Real-time low light-level image enhancement algorithm applies to FPGA. In: Proceedings of SPIE - The International Society for Optical Engineering, (2011)

    Google Scholar 

  20. Hu, X., Zhuo, L., Zhang, J., Jiang, L.: A real-time low light enhancement algorithm for intelligent analysis. In: International Conference on Progress in Informatics and Computing, pp. 273–278. IEEE, Shanghai, China (2016)

    Google Scholar 

  21. Patrick, M., Nobie, R., Imran, T.: Low light mobile video processing. Stanford University (2013)

    Google Scholar 

  22. Park, D., Park, H., Han, D.K., Ko, H: Single image dehazing with image entropy and information fidelity. In: IEEE International Conference on Image Processing (ICIP), pp.4037–4041. IEEE, Paris, France (2014)

    Google Scholar 

  23. Wei, C., Wang, W., Yang, W., Liu, J.: Deep Retinex decomposition for low light enhancement, arXiv (2018).

    Google Scholar 

  24. Simulink Android Support. https://www.mathworks.com/hardwaresupport/android-programming-simulink.html. Accessed 21 Dec 2022

  25. Android Studio. https://developer.android.com/studio. Accessed 21 Dec 2021

  26. Zhang, Q., Nie, Y., Zheng, W.S.: Dual illumination estimation for robust exposure correction. In Comput. Graph. Forum 38(7), 243–252 (2019)

    CrossRef  Google Scholar 

  27. Wang, W., Wei, C., Yang, W., Liu, J.: Low light enhancement network with global awareness. In: 13th IEEE International Conference on Automatic Face & Gesture Recognition, pp. 751–755. IEEE, Xi’an, China (2018)

    Google Scholar 

  28. Guo, X., Li, Y., Ling, H.: Low light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)

    MathSciNet  CrossRef  Google Scholar 

  29. Jiang, Y., et al.: Enlightengan: deep light enhancement without paired supervision. IEEE Trans. Image Process. 30, 2340–2349 (2021)

    CrossRef  Google Scholar 

  30. Guo, C, et al: Zero reference deep curve estimation for low light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1780–1789. IEEE, Seattle, WA, USA (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yücel Çimtay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Çimtay, Y., Yilmaz, G.N. (2022). Low Light Image Enhancement on Mobile Devices by Using Dehazing. In: Seyman, M.N. (eds) Electrical and Computer Engineering. ICECENG 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 436. Springer, Cham. https://doi.org/10.1007/978-3-031-01984-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-01984-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-01983-8

  • Online ISBN: 978-3-031-01984-5

  • eBook Packages: Computer ScienceComputer Science (R0)