Skip to main content

Quantum Data Classification by a Dissipative Protocol with a Superconducting Quantum Circuit Implementation

Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST,volume 436)

Abstract

Artificial intelligence (AI) and machine learning (ML) have begun to include promising methods for solving real-world problems. However, the power of these methods is limited by the CPU capabilities of the current computers. Quantum computing (QC) appears to be not only an alternative route for more powerful computers but also the introduction of a new computing paradigm. Much more powerful AI protocols are predicted to be developed by the QC implementations. In this study, we present a binary classification of quantum data implemented by superconducting quantum circuits. Binary classification of data is a subroutine of both AI and ML. Therefore, much effort has been spent on the development of AI and ML strategies to be implemented on quantum computers. In our framework, we adopt a dissipative protocol for the classification of quantum information. The dissipative model of quantum computing has already been proven to be well-matched to the circuit model of quantum computing. More specifically, we introduce repeated interactions-based model with distinct quantum reservoirs as strings of pure qubits representing the quantum data. In the scenario, a probe qubit repeatedly interacts with the reservoir units and the binary classification is encoded in the steady quantum state of the probe qubit. We also present analytical results including system and reservoir parameters. We use realistic parameters for the implementation of the proposal with superconducting quantum circuits which are the leading platform for building universal quantum computers.

Keywords

  • Information reservoir
  • Quantum neuron
  • Superconducting circuits
  • Collisional model

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-01984-5_13
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-01984-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943). https://doi.org/10.1007/BF02478259

    MathSciNet  CrossRef  MATH  Google Scholar 

  2. Misra, J., Saha, I.: Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing 74, 239–255 (2010)

    CrossRef  Google Scholar 

  3. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958)

    CrossRef  Google Scholar 

  4. Haykin, S.S.: Neural Networks and Learning Machines. Prentice Hall, New York (2009)

    Google Scholar 

  5. Gu, J., et al.: Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018)

    CrossRef  Google Scholar 

  6. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    CrossRef  Google Scholar 

  7. Ngai, E.W.T., Xiu, L., Chau, D.C.K.: Application of data mining techniques in customer relationship management: a literature review and classification. Expert Syst. Appl. 36, 2592–2602 (2009)

    CrossRef  Google Scholar 

  8. Hou, Z.-G., Cheng, L., Tan, M.: Decentralized robust adaptive control for the multiagent system consensus problem using neural networks. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39, 636–647 (2009)

    Google Scholar 

  9. Tajbakhsh, N., et al.: Convolutional neural networks for medical image analysis: full training or fine tuning. IEEE Trans. Med. Imaging 35, 1299–1312 (2016)

    CrossRef  Google Scholar 

  10. Tang, J., Deng, C., Huang, G.-B.: Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 27, 809–821 (2016)

    MathSciNet  CrossRef  Google Scholar 

  11. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2298–2304 (2017)

    CrossRef  Google Scholar 

  12. Mutuk, H.: Energy levels of one-dimensional anharmonic oscillator via neural networks. Mod. Phys. Lett. A 34, 1950088 (2019). https://doi.org/10.1142/S0217732319500883

    MathSciNet  CrossRef  MATH  Google Scholar 

  13. Mutuk, H.: Cornell potential: a neural network approach. Adv. High Energy Phys. 2019, e3105373 (2019)

    MATH  CrossRef  Google Scholar 

  14. Lorena, A.C., de Carvalho, A.C.P.L.F., Gama, J.M.P.: A review on the combination of binary classifiers in multiclass problems. Artif. Intell. Rev. 30(1–4), 19–37 (2009). https://doi.org/10.1007/s10462-009-9114-9

    CrossRef  Google Scholar 

  15. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recogn. 44, 1761–1776 (2011)

    CrossRef  Google Scholar 

  16. Moore, G.E.: Cramming more components onto integrated circuits 38, 4 (1965)

    Google Scholar 

  17. Schuld, M., Petruccione, F.: Learning with quantum models. In: Schuld, M., Petruccione, F. (eds.) Supervised Learning with Quantum Computers, pp. 247–272. Springer, Cham (2018)

    MATH  CrossRef  Google Scholar 

  18. Schuld, M., Sinayskiy, I., Petruccione, F.: The quest for a quantum neural network. Quantum Inf. Process. 13(11), 2567–2586 (2014). https://doi.org/10.1007/s11128-014-0809-8

    MathSciNet  CrossRef  MATH  Google Scholar 

  19. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)

    CrossRef  Google Scholar 

  20. Banchi, L., Pancotti, N., Bose, S.: Quantum gate learning in qubit networks: Toffoli gate without time-dependent control. npj Quantum Inf. 2, 1–6 (2016)

    CrossRef  Google Scholar 

  21. Lloyd, S., Weedbrook, C.: Quantum generative adversarial learning. Phys. Rev. Lett. 121, 040502 (2018)

    MathSciNet  CrossRef  Google Scholar 

  22. Huang, H.-Y., et al.: Power of data in quantum machine learning. Nat Commun. 12, 2631 (2021)

    CrossRef  Google Scholar 

  23. Yamamoto, A.Y., Sundqvist, K.M., Li, P., Harris, H.R.: Simulation of a multidimensional input quantum perceptron. Quantum Inf. Process. 17 (2018). Article number: 128. https://doi.org/10.1007/s11128-018-1858-1

  24. Tacchino, F., Macchiavello, C., Gerace, D., Bajoni, D.: An artificial neuron implemented on an actual quantum processor. npj Quantum Inf. 5, 1–8 (2019)

    CrossRef  Google Scholar 

  25. Torrontegui, E., García-Ripoll, J.J.: Unitary quantum perceptron as efficient universal approximator. EPL 125, 30004 (2019)

    CrossRef  Google Scholar 

  26. Abbas, A., Schuld, M., Petruccione, F.: On quantum ensembles of quantum classifiers. Quantum Mach. Intell. 2 (2020). Article number: 6. https://doi.org/10.1007/s42484-020-00018-6

  27. Mangini, S., Tacchino, F., Gerace, D., Bajoni, D., Macchiavello, C.: Quantum computing models for artificial neural networks. EPL 134, 10002 (2021)

    CrossRef  Google Scholar 

  28. Türkpençe, D., Akıncı, T.Ç., Şeker, S.: A steady state quantum classifier. Phys. Lett. A 383, 1410–1418 (2019)

    MATH  CrossRef  Google Scholar 

  29. Korkmaz, U., Türkpençe, D.: Transfer of quantum information via a dissipative protocol for data classification. Phys. Lett. A 426, 127887 (2022)

    MathSciNet  MATH  CrossRef  Google Scholar 

  30. Blume-Kohout, R., Zurek, W.H.: A simple example of “Quantum Darwinism”: redundant information storage in many-spin environments. Found. Phys. 35(11), 1857–1876 (2005). https://doi.org/10.1007/s10701-005-7352-5

    MathSciNet  CrossRef  MATH  Google Scholar 

  31. Zwolak, M., Zurek, W.H.: Redundancy of einselected information in quantum Darwinism: the irrelevance of irrelevant environment bits. Phys. Rev. A 95, 030101 (2017)

    CrossRef  Google Scholar 

  32. Korkmaz, U., Sanga, C., Türkpençe, D.: Mimicking an information reservoir by superconducting quantum circuits. In: 2021 5th International Symposium on multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 105–109 (2021)

    Google Scholar 

  33. Verstraete, F., Wolf, M.M., Ignacio Cirac, J.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633–636 (2009)

    CrossRef  Google Scholar 

  34. Poyatos, J.F., Cirac, J.I., Zoller, P.: Quantum reservoir engineering with laser cooled trapped ions. Phys. Rev. Lett. 77, 4728–4731 (1996)

    CrossRef  Google Scholar 

  35. Altintas, F.: Dissipative dynamics of atom–field entanglement in the ultrastrong-coupling regime. Phys. Scr. 2014(T160), 014002 (2014)

    CrossRef  Google Scholar 

  36. Wang, C., Gertler, J.M.: Autonomous quantum state transfer by dissipation engineering. Phys. Rev. Res. 1, 033198 (2019)

    CrossRef  Google Scholar 

  37. Marshall, J., Campos Venuti, L., Zanardi, P.: Classifying quantum data by dissipation. Phys. Rev. A 99, 032330 (2019)

    CrossRef  Google Scholar 

  38. Du, Y., Hsieh, M.-H., Liu, T., Tao, D., Liu, N.: Quantum noise protects quantum classifiers against adversaries. Phys. Rev. Res. 3, 023153 (2021)

    CrossRef  Google Scholar 

  39. Deffner, S., Jarzynski, C.: Information processing and the second law of thermodynamics: an inclusive, hamiltonian approach. Phys. Rev. X 3, 041003 (2013)

    Google Scholar 

  40. Deffner, S.: Information-driven current in a quantum Maxwell demon. Phys. Rev. E 88, 062128 (2013)

    CrossRef  Google Scholar 

  41. Kołodyński, J., Brask, J.B., Perarnau-Llobet, M., Bylicka, B.: Adding dynamical generators in quantum master equations. Phys. Rev. A 97, 062124 (2018)

    CrossRef  Google Scholar 

  42. Wolf, M.M., Cirac, J.I.: Dividing quantum channels. Commun. Math. Phys. 279, 147–168 (2008). https://doi.org/10.1007/s00220-008-0411-y

    MathSciNet  CrossRef  MATH  Google Scholar 

  43. Filippov, S.N., Piilo, J., Maniscalco, S., Ziman, M.: Divisibility of quantum dynamical maps and collision models. Phys. Rev. A 96, 032111 (2017)

    CrossRef  Google Scholar 

  44. Wendin, G.: Quantum information processing with superconducting circuits: a review. Rep. Prog. Phys. 80, 106001 (2017)

    MathSciNet  CrossRef  Google Scholar 

  45. Majer, J., et al.: Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007)

    CrossRef  Google Scholar 

  46. Filipp, S., et al.: Multimode mediated qubit-qubit coupling and dark-state symmetries in circuit quantum electrodynamics. Phys. Rev. A 83, 063827 (2011)

    CrossRef  Google Scholar 

  47. Koch, J., et al.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A. 76, 042319 (2007)

    CrossRef  Google Scholar 

  48. Krantz, P., Kjaergaard, M., Yan, F., Orlando, T.P., Gustavsson, S., Oliver, W.D.: A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019)

    CrossRef  Google Scholar 

  49. Bruneau, L., Joye, A., Merkli, M.: Repeated interactions in open quantum systems. J. Math. Phys. 55, 075204 (2014)

    MathSciNet  MATH  CrossRef  Google Scholar 

  50. Scarani, V., Ziman, M., Štelmachovič, P., Gisin, N., Bužek, V.: Thermalizing quantum machines: dissipation and entanglement. Phys. Rev. Lett. 88, 097905 (2002)

    CrossRef  Google Scholar 

  51. Johansson, J.R., Nation, P.D., Nori, F.: QuTiP: an open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183, 1760–1772 (2012)

    CrossRef  Google Scholar 

  52. Johansson, J.R., Nation, P.D., Nori, F.: QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184, 1234–1240 (2013)

    CrossRef  Google Scholar 

  53. Deng, X.-H., Barnes, E., Economou, S.E.: Robustness of error-suppressing entangling gates in cavity-coupled transmon qubits. Phys. Rev. B 96, 035441 (2017)

    CrossRef  Google Scholar 

  54. Liao, J.-Q., Dong, H., Sun, C.P.: Single-particle machine for quantum thermalization. Phys. Rev. A 81, 052121 (2010)

    CrossRef  Google Scholar 

Download references

Acknowledgment

We would like to express our gratitude for the support of this study from TUBITAK (Grant No. 120F353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ufuk Korkmaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Korkmaz, U., Sanga, C., Türkpençe, D. (2022). Quantum Data Classification by a Dissipative Protocol with a Superconducting Quantum Circuit Implementation. In: Seyman, M.N. (eds) Electrical and Computer Engineering. ICECENG 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 436. Springer, Cham. https://doi.org/10.1007/978-3-031-01984-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-01984-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-01983-8

  • Online ISBN: 978-3-031-01984-5

  • eBook Packages: Computer ScienceComputer Science (R0)