Skip to main content

Clinical Decision Support Systems for Remote and Commuting Clinicians

  • Chapter
Image and Signal Processing for Networked eHealth Applications

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • L. E. Perreault, and J. B. Metzger, “A pragmatic framework for understanding clinical decision support,” J. Healthc. Inf. Manage. Syst. Soc., vol. 13, no. 2, pp. 5–21, 1999.

    Google Scholar 

  • J. C. Wyatt and J. L. Liu, “Basic concepts in medical informatics,” J. Epidemiol. Community Health, vol. 56, pp. 808–812, 2002.https://doi.org/10.1136/jech.56.11.808

    Article  Google Scholar 

  • B. Kaplan, “Evaluating informatics applications—clinical decision support systems literature review,” Int. J. Med. Inf., vol. 64, no. 1, pp. 15–37, 2001.https://doi.org/10.1016/S1386-5056(01)00183-6

    Article  Google Scholar 

  • K. Zheng, R. Padman, M. P. Johnson, and H. S. Diamond, “Understanding technology adoption in clinical care: Clinician adoption behavior of a point-of-care reminder system,” Int. J. Med. Inf., vol. 74, no. 7–8, pp. 535–543, 2005.https://doi.org/10.1016/j.ijmedinf.2005.03.007

    Article  Google Scholar 

  • T. S. Lim, W. Y. Loh, and Y. S. Shih, “A Comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms,” Mach. Learn., vol. 40, pp. 203–229, 2000.https://doi.org/10.1023/A:1007608224229

    Article  MATH  Google Scholar 

  • L. Bull, Applications of Learning Classifier Systems. New York: Springer-Verlag, 2004.

    Book  Google Scholar 

  • M. Ohlsson, “WeAidU—A decision support system for myocardial perfusion images using artificial neural networks,” Artif. Intell. Med., vol. 30, no. 1, pp. 49–60, 2004. https://doi.org/10.1016/S0933-3657(03)00050-2

    Article  Google Scholar 

  • M. Hilario, A. Kalousis, M. Muller, and C. Pellegrini, “Machine learning approaches to lung cancer prediction from mass spectra,” Proteomics, vol. 3, pp. 1716–1719, 2003. https://doi.org/10.1002/pmic.200300523

    Article  Google Scholar 

  • J. Prados, A. Kalousis, J. C. Sanchez, L. Allard, O. Carrette, and M. Hilario, “Mining mass spectra for diagnosis and biomarker discovery of cerebral accidents,” Proteomics, vol. 4, pp. 2320–2332, 2004.https://doi.org/10.1002/pmic.200400857

    Article  Google Scholar 

  • M. Wagner, D. Naik, A. Pothen, S. Kasukurti, R. Devineni, B. L. Adam, O. J. Semmes, and G. L. Wright Jr., “Computational protein biomarker prediction: A case study for prostate cancer,” BMC Bioinform., vol. 5, p. 26, 2004.

    Article  Google Scholar 

  • A. E. Smith, C. D. Nugent, and S. I. McClean, “Evaluation of inherent performance of intelligent medical decision support systems: Utilising neural networks as an example,” Artif. Intell. Med., vol. 27, no. 1, pp. 1–27, 2003.https://doi.org/10.1016/S0933-3657(02)00088-X

    Article  Google Scholar 

  • M. E. Futschik, M. Sullivan, A. Reeve, and N. Kasabov, “Prediction of clinical behaviour and treatment for cancers,” OMJ Appl. Bioinform., vol. 2, no. 3, pp. 53–58, 2003.

    Google Scholar 

  • G. Ball, S. Mian, F. Holding, R. O. Allibone, J. Lowe, S. Ali, G. Li, S. McCardle, I. O. Ellis, C. Creaser, and R. C. Rees, “An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers,” Bioinformatics, vol. 18, no. 3, pp. 395–404, 2002.https://doi.org/10.1093/bioinformatics/18.3.395

    Article  Google Scholar 

  • L. J. Lancashire, S. Mian, I. O. Ellis, R. C. Rees, and G. R. Ball, “Current developments in the analysis of proteomic data: Artificial neural network data mining techniques for the identification of proteomic biomarkers related to breast cancer,” Curr. Proteom., vol. 2, no. 1, pp. 15–29, 2005.https://doi.org/10.2174/1570164053507808

    Article  Google Scholar 

  • I. Maglogiannis and E. Zafiropoulos, “Utilizing support vector machines for the characterization of digital medical images,” BMC Med. Inf. Decis. Making, vol. 4, no. 4, 2004, http://www.biomedcentral.com/1472-6947/4/4/

  • P. J. Lisboa, “A review of evidence of health benefit from artificial neural networks in medical intervention,” Neural Netw., vol. 15, no. 1, pp. 11–39, 2002.https://doi.org/10.1016/S0893-6080(01)00111-3

    Article  Google Scholar 

  • S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Prentice Hall, 1999.

    Google Scholar 

  • J. H. Chuang, G. Hripcsak, and R. A. Jenders, “Considering clustering: A methodological review of clinical decision support system studies,” in Proc. AMIA Symp., 2000, pp. 146–150.

    Google Scholar 

  • H. Wang, F. Azuaje, and N. Black, “An integrative and interactive framework for improving biomedical pattern discovery and visualization,” IEEE Trans. Inf. Technol. Biomed., vol. 8, no. 1, pp. 16–27, 2004.https://doi.org/10.1109/TITB.2004.824727

    Article  Google Scholar 

  • H. M. Kuerer, K. R. Coombes, J. N. Chen, L. Xiao, C. Clarke, H. Fritsche, S. Krishnamurthy, S. Marcy, M. C. Hung, and K. K. Hunt, “Association between ductal fluid proteomic expression profiles and the presence of lymph node metastases in women with breast cancer,” Surgery, vol. 136, no. 5, pp. 1061–1069, 2004. https://doi.org/10.1016/j.surg.2004.04.011

    Article  Google Scholar 

  • P. V. Purohit and D. M. Rocke, “Discriminant models for high-throughput proteomics mass spectrometer data,” Proteomics, vol. 3, pp. 1699–1703, 2003. https://doi.org/10.1002/pmic.200300518

    Article  Google Scholar 

  • M. Wallace, N. Tsapatsoulis, and S. Kollias, “Intelligent initialization of resource allocating RBF networks,” Neural Netw., vol. 18, no. 2, pp. 117–122, 2005. https://doi.org/10.1016/j.neunet.2004.11.005

    Article  Google Scholar 

  • T. Kohonen, Self-Organizing Maps, 2nd ed. Berlin: Springer-Verlag, 1997.

    Book  Google Scholar 

  • T. P. Conrads, V. A. Fusaro, S. Ross, D. Johann, V. Rajapakse, B. A. Hitt, S. M. Steinberg, E. C. Kohn, D. A. Fishman, G. Whitely, J. C. Barrett, L. A. Liotta, E. F. Petricoin, and T. D. Veenstra, “High-resolution serum proteomic features for ovarian cancer detection,” Endocr. Relat. Cancer, vol. 11, no. 2, pp. 163–178, 2004.https://doi.org/10.1677/erc.0.0110163

    Article  Google Scholar 

  • D. J. Johann Jr., M. D. McGuigan, S. Tomov, V. A. Fusaro, S. Ross, T. P. Conrads, T. D. Veenstra, D. A. Fishman, G. R. Whiteley, E. F. Petricoin, and L. A. Liotta, “Novel approaches to visualization and data mining reveals diagnostic information in the low amplitude region of serum mass spectra from ovarian cancer patients,” Dis. Markers, vol. 19, pp. 197–207, 2004.

    Article  Google Scholar 

  • D. Ornstein, W. Rayford, V. Fusaro, T. Conrads, S. Ross, B. Hitt, W. Wiggins, T. Veenstra, L. Liotta, and E. Petricoin, “Serum proteomic profiling can discriminate prostate cancer from benign prostates in men with total prostate specific antigen levels between 2.5 and 15.0 NG/ML,” J. Urol., vol. 172, no. 4, pp. 1302–1305, 2004.https://doi.org/10.1097/01.ju.0000139572.88463.39

    Article  Google Scholar 

  • J. H. Stone, V. N. Rajapakse, G. S. Hoffman, U. Specks, P. A. Merkel, R. F. Spiera, J. C. Davis, E. W. St.Clair, J. McCune, S. Ross, B. A. Hitt, T. D. Veenstra, T. P. Conrads, L. A. Liotta, and E. F. Petricoin, “A serum proteomic approach to gauging the state of remission in Wegener’s granulomatosis,” Arthritis Rheum., vol. 52, pp. 902–910, 2005. https://doi.org/10.1002/art.20938

    Article  Google Scholar 

  • H. Shi and M. K. Markey, “A machine learning perspective on the development of clinical decision support systems utilizing mass spectra of blood samples,” J. Biomed. Inf., to be published.

    Google Scholar 

  • A Statnikov, C. F. Aliferis, and I. Tsamardinos, “Methods for multi-category cancer diagnosis from gene expression data: A comprehensive evaluation to inform decision support system development,” Medinfo, vol. 11, pp. 813–817, 2004.

    Google Scholar 

  • L. Li, H. Tang, Z. Wu, J. Gong, M. Gruidl, J. Zou, M. Tockman, and R. A. Clark, “Data mining techniques for cancer detection using serum proteomic profiling,” Artif. Intell. Med., vol. 32, pp. 71–83, 2004.https://doi.org/10.1016/j.artmed.2004.03.006

    Article  Google Scholar 

  • B. Wu, T. Abbott, D. Fishman, W. McMurray, G. Mor, K. Stone, D. Ward, K. Williams, and H. Zhao, “Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data,” Bioinformatics, vol. 19, no. 13, pp. 1636–1643, 2003. https://doi.org/10.1093/bioinformatics/btg210

    Article  Google Scholar 

  • I. Maglogiannis, S. Pavlopoulos, and D. Koutsouris, “An integrated computer supported acquisition, handling and characterization system for pigmented skin lesions in derma-tological images,” IEEE Trans. Inf. Technol. Biomed., vol. 9, no. 1, pp. 86–98, 2005. https://doi.org/10.1109/TITB.2004.837859

    Article  Google Scholar 

  • J. R. Trimarchi, J. Goodside, L. Passmore, T. Silberstein, L. Hamel, and L. Gonzalez, “Assessing decision tree models for clinical in-vitro fertilization data,” Dept. of Computer Science and Statistics, Univ. Rhode Island, Tech. Rep. TR03-296, 2003.

    Google Scholar 

  • R. D. Niederkohr and L. A. Levin, “Management of the patient with suspected temporal arteritis: A decision-analytic approach,” Ophthalmology, vol. 112, no. 5, pp. 744–756, 2005.https://doi.org/10.1016/j.ophtha.2005.01.031

    Article  Google Scholar 

  • N. Ghinea and J. M. Van Gelder, “A probabilistic and interactive decision-analysis system for unruptured intracranial aneurysms,” Neurosurg. Focus, vol. 17, no. 5, p. E9, 2004.

    Article  Google Scholar 

  • M.K. Markey,G. D. Tourassi, and C. E. J.Floyd, “Decision tree classification of proteins identified by mass spectrometry of blood serum samples from people with and without lung cancer,” Proteomics, vol. 3, no. 9, pp. 1678–1679, 2003.https://doi.org/10.1002/pmic.200300521

    Article  Google Scholar 

  • H. Zhu, C. Y. Yu, and H. Zhang, “Tree-based disease classification using protein data,” Proteomics, vol. 3, no. 9, pp. 1673–1677, 2003.https://doi.org/10.1002/pmic.200300520

    Article  Google Scholar 

  • V. Podgorelec, P. Kokol, B. Stiglic, and I. Rozman, “Decision trees: An overview and their use in medicine,” J. Med. Syst., vol. 26, no. 5, pp. 445–463, 2002. https://doi.org/10.1023/A:1016409317640

    Article  Google Scholar 

  • G. Fumera and F. Roli, “A theoretical and experimental analysis of linear combiners for multiple classifier systems,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 6, pp. 942–956, 2005.https://doi.org/10.1109/TPAMI.2005.109

    Article  Google Scholar 

  • P. Mangiameli, D. West, and R. Rampal, “Model selection for medical diagnosis decision support systems,” Decis. Support Syst., vol. 36, no. 3, pp. 247–259, 2004. https://doi.org/10.1016/S0167-9236(02)00143-4

    Article  Google Scholar 

  • A. C. Tan and D. Gilbert, “Ensemble machine learning on gene expression data for cancer classification,” Appl. Bioinform., vol. 2, no. 3, pp. 75–83, 2003.

    Google Scholar 

  • P. L. Martelli, P. Fariselli, and R. Casadio, “An ENSEMBLE machine learning approach for the prediction of all-alpha membrane proteins,” Bioinformatics, vol. 19, pp. 205–211, 2003.https://doi.org/10.1093/bioinformatics/btg1027

    Article  Google Scholar 

  • M. Wallace and N. Tsapatsoulis, “Combining GAs and RBF neural networks for fuzzy rule extraction from numerical data,” in Int. Conf. Artificial Neural Networks, Warsaw, Poland, Sep. 2005.

    Google Scholar 

  • J. R. Rabunal, J. Dorado, A. Pazos, J. Pereira, and D. Rivero, “A new approach to the extraction of ANN rules and to their generalization capacity through GP,” Neural Comput., vol. 16, no. 7, pp. 1483–1523, 2004.https://doi.org/10.1162/089976604323057461

    Article  MATH  Google Scholar 

  • J. H. T. Bates and M. P. Young, “Applying fuzzy logic to medical decision making in the intensive care unit,” Am. J. Respir. Crit. Care Med., vol. 167, no. 7, pp. 948–952, 2003. https://doi.org/10.1164/rccm.200207-777CP

    Article  Google Scholar 

  • P. R. Innocent, R. I. John, and J. M. Garibaldi, “Fuzzy methods for medical diagnosis,” Appl. Artif. Intell., vol. 19, no. 1, pp. 69–98, 2005.https://doi.org/10.1080/08839510590887414

    Article  Google Scholar 

  • S. Barro and R. Marin, Fuzzy Logic in Medicine. Physica-Verlag (Heidelberg), 2002.

    Google Scholar 

  • M. Mahfouf, M. F. Abbod, and D. A. Linkens, “A survey of fuzzy logic monitoring and control utilisation in medicine,” Artif. Intell. Med., vol. 21, no. 1–3, pp. 27–42, 2001. https://doi.org/10.1016/S0933-3657(00)00071-3

    Article  Google Scholar 

  • http://www.computer.privateweb.at/judith/specialfield3.htm

  • N. Rousseau, E. McColl, J. Newton, J. Grimshaw, and M. Eccles, “Practice based, longitudinal, qualitative interview study of computerized evidence-based guidelines in primary care,” Br. Med. J., vol. 326, pp. 1–8, 2003.

    Article  Google Scholar 

  • A. X. Garg, N. K. Adhikari, H. McDonald, M. P. Rosas-Arellano, P. J. Devereaux, J. Beyene, J. Sam, and R. B. Haynes, “Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: A systematic review,” J. Am. Med. Assoc., vol. 293, no. 10, pp. 1223–1238, 2005.https://doi.org/10.1001/jama.293.10.1223

    Article  Google Scholar 

  • S. Dreiseitl and M. Binder, “Do physicians value decision support? A look at the effect of decision support systems on physician opinion,” Artif. Intell. Med., vol. 33, no. 1, pp. 25–30, 2005.https://doi.org/10.1016/j.artmed.2004.07.007

    Article  Google Scholar 

  • K. Kawamoto, C. A. Houlihan, E. A. Balas, and D. F. Lobach, “Improving clinical practice using clinical decision support systems: A systematic review of trials to identify features critical to success,” Br. Med. J., vol. 330, no. 7494, pp. 740–741, 2005.

    Article  Google Scholar 

  • D. Jegelevicius, V. Marozas, A. Lukosevicius, and M. Patasius, “Web-based health services and clinical decision support,” Stud. Health Technol. Inform., vol. 105, pp. 27–37, 2004.

    Google Scholar 

  • P. Fortier, S. Jagannathan, H. Michel, N. Dluhy, and E. Oneil, “Development of a handheld real-time decision support aid for critical care nursing,” HICSS’03, vol. 6, no. 6, p. 160, 2003.

    Google Scholar 

  • G. Eysenbach, J. Powell, M. Englesakis, C. Rizo, and A. Stern, “Health related virtual communities and electronic support groups: Systematic review of the effects of online peer to peer interactions,” Br. Med. J., vol. 328, no. 7449, pp. 1–6, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Maglogiannis, I., Karpouzis, K., Wallace, M. (2006). Clinical Decision Support Systems for Remote and Commuting Clinicians. In: Image and Signal Processing for Networked eHealth Applications. Synthesis Lectures on Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-01609-7_4

Download citation

Publish with us

Policies and ethics