Skip to main content

Impact of Dimensionality on Nowcasting Seasonal Influenza with Environmental Factors

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XX (IDA 2022)

Abstract

Seasonal influenza is an infectious disease of multi-causal etiology and a major cause of mortality worldwide that has been associated with environmental factors. In the attempt to model and predict future outbreaks of seasonal influenza with multiple environmental factors, we face the challenge of increased dimensionality that makes the models more complex and unstable. In this paper, we propose a nowcasting and forecasting framework that compares the theoretical approaches of Single Environmental Factor and Multiple Environmental Factors. We introduce seven solutions to minimize the weaknesses associated with the increased dimensionality when predicting seasonal influenza activity level using multiple environmental factors as external proxies. Our work provides evidence that using dimensionality reduction techniques as a strategy to combine multiple datasets improves seasonal influenza forecasting without the penalization of increased dimensionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Austin, E., Coull, B., Thomas, D., Koutrakis, P.: A framework for identifying distinct multipollutant profiles in air pollution data. Environ. Int. 45, 112–121 (2012)

    Article  Google Scholar 

  2. Chadsuthi, S., Iamsirithaworn, S., Triampo, W., Modchang, C.: Modeling seasonal influenza transmission and its association with climate factors in Thailand using time-series and ARIMAX analyses. Comput. Math. Methods Med. 2015 (2015)

    Google Scholar 

  3. Chretien, J.P., George, D., Shaman, J., Chitale, R.A., McKenzie, F.E.: Influenza forecasting in human populations: a scoping review. PLoS One 9(4), e94130 (2014)

    Google Scholar 

  4. Davalos, A.D., Luben, T.J., Herring, A.H., Sacks, J.D.: Current approaches used in epidemiologic studies to examine short-term multipollutant air pollution exposures. Ann. Epidemiol. 27(2), 145–153 (2017)

    Article  Google Scholar 

  5. Deng, P., Wang, H., Li, T., Horng, S.J., Zhu, X.: Linear discriminant analysis guided by unsupervised ensemble learning. Inf. Sci. 480, 211–221 (2019)

    Article  MathSciNet  Google Scholar 

  6. Dominici, F., Peng, R.D., Barr, C.D., Bell, M.L.: Protecting human health from air pollution: shifting from a single-pollutant to a multi-pollutant approach. Epidemiology (Camb. Mass.) 21(2), 187 (2010)

    Article  Google Scholar 

  7. European Environment Agency: Downloadable data about Europe’s environment (2021). https://www.eea.europa.eu/data-and-maps/data#c0=5&c11=&c5=all&b_start=0. Accessed November 2021

  8. Ginsberg, J., Mohebbi, M.H., Patel, R.S., Brammer, L., Smolinski, M.S., Brilliant, L.: Detecting influenza epidemics using search engine query data. Nature 457, 1012–1014 (2009)

    Article  Google Scholar 

  9. He, Z., Tao, H.: Epidemiology and ARIMA model of positive-rate of influenza viruses among children in Wuhan, China: a nine-year retrospective study. Int. J. Infect. Dis. 74, 61–70 (2018)

    Article  Google Scholar 

  10. Iuliano, A.D., et al.: Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. The Lancet 391(10127), 1285–1300 (2018)

    Article  Google Scholar 

  11. Johannson, K.A., Balmes, J.R., Collard, H.R.: Air pollution exposure: a novel environmental risk factor for interstitial lung disease? Chest 147(4), 1161–1167 (2015)

    Article  Google Scholar 

  12. Kak, S.: Information theory and dimensionality of space. Sci. Rep. 10(1), 1–5 (2020)

    Article  Google Scholar 

  13. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Discov. 15(2), 107–144 (2007)

    Article  MathSciNet  Google Scholar 

  14. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  15. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

  16. Meteorologisk Institutt: Frost API (2021). https://frost.met.no/index.html. Accessed November 2021

  17. Miliou, I., et al.: Predicting seasonal influenza using supermarket retail records. PLoS Comput. Biol. 17(7), e1009087 (2021)

    Google Scholar 

  18. Nhung, N.T.T., et al.: Short-term association between ambient air pollution and pneumonia in children: a systematic review and meta-analysis of time-series and case-crossover studies. Environ. Pollut. 230, 1000–1008 (2017)

    Article  Google Scholar 

  19. Nisar, N., et al.: Seasonality of influenza and its association with meteorological parameters in two cities of Pakistan: a time series analysis. PLoS One 14(7), e0219376 (2019)

    Google Scholar 

  20. Park, J.E., Son, W.S., Ryu, Y., Choi, S.B., Kwon, O., Ahn, I.: Effects of temperature, humidity, and diurnal temperature range on influenza incidence in a temperate region. Influenza Other Respir. Viruses 14(1), 11–18 (2020)

    Article  Google Scholar 

  21. Samaras, L., García-Barriocanal, E., Sicilia, M.A.: Comparing social media and google to detect and predict severe epidemics. Sci. Rep. 10(1), 1–11 (2020)

    Article  Google Scholar 

  22. Shafran-Nathan, R., Levy, I., Levin, N., Broday, D.M.: Ecological bias in environmental health studies: the problem of aggregation of multiple data sources. Air Qual. Atmos. Health 10(4), 411–420 (2016). https://doi.org/10.1007/s11869-016-0436-x

    Article  Google Scholar 

  23. Shaman, J., Karspeck, A., Yang, W., Tamerius, J., Lipsitch, M.: Real-time influenza forecasts during the 2012–2013 season. Nat. Commun. 4, 2837 (2013)

    Article  Google Scholar 

  24. Tran, T.Q., Sakuma, J.: Seasonal-adjustment based feature selection method for predicting epidemic with large-scale search engine logs. In: KDD 2019, pp. 2857–2866 (2019)

    Google Scholar 

  25. Wen, K.L.: Grey Systems: Modeling and Prediction, Yang’s Scientific Research Institute, vol. 4. Yang’s Scientific Press (2004)

    Google Scholar 

  26. WHO: FluNet (2021). https://www.who.int/tools/flunet. Accessed November 2021

  27. WHO: Influenza (seasonal)t (2021). https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal). Accessed November 2021

  28. WHO: Who flumart outputs (2021). https://apps.who.int/flumart/Default?ReportNo=10. Accessed November 2021

  29. Yang, W., Lipsitch, M., Shaman, J.: Inference of seasonal and pandemic influenza transmission dynamics. Proc. Natl. Acad. Sci. 112(9), 2723–2728 (2015)

    Article  Google Scholar 

  30. Yu, H.R., et al.: A multifactorial evaluation of the effects of air pollution and meteorological factors on asthma exacerbation. Int. J. Environ. Res. Public Health 17(11), 4010 (2020)

    Article  Google Scholar 

  31. Zheng, Y., Wang, K., Zhang, L., Wang, L.: Study on the relationship between the incidence of influenza and climate indicators and the prediction of influenza incidence. Environ. Sci. Pollut. Res. 28(1), 473–481 (2020). https://doi.org/10.1007/s11356-020-10523-7

    Article  Google Scholar 

Download references

Acknowledgements

The work of IM and PP has been supported in part by the Digital Futures EXTREMUM project titled “Explainable and Ethical Machine Learning for Knowledge Discovery from Medical Data Sources”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioanna Miliou .

Editor information

Editors and Affiliations

Appendix

Appendix

In Table 2 we comparatively present the performance of all models in each solution using the following performance indicators: MAPE, RMSE, and Pearson correlation.

Table 2. Performance indicators for all models in each solution.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guarnizo, S., Miliou, I., Papapetrou, P. (2022). Impact of Dimensionality on Nowcasting Seasonal Influenza with Environmental Factors. In: Bouadi, T., Fromont, E., Hüllermeier, E. (eds) Advances in Intelligent Data Analysis XX. IDA 2022. Lecture Notes in Computer Science, vol 13205. Springer, Cham. https://doi.org/10.1007/978-3-031-01333-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-01333-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-01332-4

  • Online ISBN: 978-3-031-01333-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics