Skip to main content

Abstract

Dytiscid beetles live in spatially discrete habitat patches of varying temporal duration and ecological stability. Many species are exemplary active dispersers, moving between suitable localities, sometimes on multiple occasions within an individual’s lifetime. Despite this, there is apparently much variation in the ability of individual species to disperse by flight, this having far-reaching consequences for their evolution and persistence. This chapter examines the mechanisms, causes and consequences of dispersal in diving beetles, reviewing work on flight and flightlessness, ultimate and proximate triggers of dispersal, and the biogeographical/macroecological consequences of movement, as well as suggesting areas where further research is required. Most diving beetle species fly, but some do so far more readily and over longer temporal windows than others. The degree to which individual species disperse may be shaped largely by habitat stability and persistence; something which has significant consequences for the composition of regional faunas.

I was reading in bed in Sussex in July, 1937, at 11.15 p.m. when a male Ilybius fuliginosus flew in at the window and settled on my pillow … F. Balfour-Browne (1953)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abellán P, Millán A, Ribera I (2009) Parallel habitat-driven differences in the phylogeographic structure of two independent lineages of Mediterranean saline water beetles. Mol Ecol 18:3885–3902

    Article  Google Scholar 

  • Abellán P, Benetti CJ, Angus RB, Ribera I (2011) A review of Quaternary range shifts in European aquatic Coleoptera. Glob Ecol Biogeogr 20:87–100

    Article  Google Scholar 

  • Ã…björnsson K, Wagner MAB, Axelsson A, Bjerselius R, Olsén KH (1997) Responses of Acilius sulcatus (Coleoptera: Dytiscidae) to chemical cues from perch (Perca fluviatilis). Oecologia 111:166–171

    Article  Google Scholar 

  • Arribas P, Velasco J, Abellán P, Sánchez-Fernandez D, Andújar C, Calosi P, Millán A, Ribera I, Bilton DT (2012) Dispersal ability rather than ecological tolerance drives differences in range size between lentic and lotic water beetles (Coleoptera: Hydrophilidae). J Biogeogr 39:984–994

    Article  Google Scholar 

  • Avise JC (1992) Molecular population structure and the biogeographic history of a regional fauna - a case history with lessons for conservation biology. Oikos 63:62–76

    Article  CAS  Google Scholar 

  • Balfour-Browne F (1944) The wing-venation of the Adephaga (Coleoptera), with special reference to the Hydradephaga and some homologies with the Polyphaga. J R Microsc Soc 63:55–84

    Article  Google Scholar 

  • Balfour-Browne J (1945) Aquatic Coleoptera of Oceania (Dytiscidae, Gyrinidae, and Palpicornia). Occas Pap Bernice P Bishop Mus 18:103–132

    Google Scholar 

  • Balfour-Browne F (1950) British water beetles, vol 2. Ray Society, London

    Google Scholar 

  • Balfour-Browne F (1953) The aquatic Coleoptera of the western Scottish islands with a discussion of their sources of origin and means of arrival. Entomol’s Gaz 4:79–127

    Google Scholar 

  • Balke M, Pons J, Ribera I, Sagata K, Vogler AP (2007) Infrequent and unidirectional colonization of hyperdiverse Papuadytes diving beetles in New Caledonia and New Guinea. Mol Phylogenet Evol 42:505–516

    Article  CAS  Google Scholar 

  • Balke M, Gómez-Zurita J, Ribera I, Viloria A, Zillikens A, Steiner J, García M, Hendrich L, Vogler AP (2008) Ancient associations of aquatic beetles and tank bromeliads in the Neotropical forest canopy. Proc Natl Acad Sci U S A 105:6356–6361

    Article  CAS  Google Scholar 

  • Balke M, Ribera I, Hendrich L, Miller MA, Sagata K, Posman A, Vogler AP, Meier R (2009) New Guinea highland origin of a widespread arthropod supertramp. Proc R Soc Lond B 276:2359–2367

    CAS  Google Scholar 

  • Bilton DT (1994) The flight apparatus and flying ability of Hydroporus glabriusculus Aubé (Coleoptera, Dytiscidae), with a brief review of structural modifications in flightless beetles. Entomol Tidskr 115:23–32

    Google Scholar 

  • Bilton DT, Fery H (1996) Revisional notes on Rhithrodytes Bameul 1989, with the description of a new subspecies and the introduction of Rhithrodytes dorsoplagiatus (Fairmaire) as a valid species (Coleoptera, Dytiscidae). Linz Biol Beitr 28:917–931

    Google Scholar 

  • Bilton DT, Freeland JR, Okamura B (2001) Dispersal in freshwater invertebrates. Annu Rev Ecol Syst 32:159–181

    Article  Google Scholar 

  • Bilton DT, Ribera I, Short AEZ (2019) Water beetles as models in ecology and evolution. Annu Rev Entomol 64:359–377

    Article  CAS  Google Scholar 

  • Boda P, Csabai Z (2013) When do beetles and bugs fly? A unified scheme for describing seasonal flight behaviour of highly dispersing primary aquatic insects. Hydrobiologia 703:133–147

    Article  Google Scholar 

  • Böhning-Gaese K, Caprano T, van Ewijk K, Veith M (2006) Range size: disentangling current traits and phylogenetic and biogeographic factors. Am Nat 167:555–567

    Article  Google Scholar 

  • Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45

    Article  CAS  Google Scholar 

  • Bonte D, Van Dyck H, Bullock JM, Coulon A, Delgado M, Gibbs M, Lehouck V, Matthysen E, Mustin K, Saastamoinen M, Schtickzelle N, Stevens VM, Vandewoestijne S, Baguette M, Barton K, Benton TG, Chaput-Bardy A, Clobert J, Dytham C, Hovestadt T, Meier CM, Palmer SCF, Turlure C, Travis JMJ (2012) Costs of dispersal. Biol Rev 87:290–312

    Article  Google Scholar 

  • Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225

    Article  Google Scholar 

  • Brinck P (1948) Coleoptera of Tristan da Cunha. Results of the Norwegian Scientific Expedition to Tristan da Cunha 1937–1938, 17: 1–121 + 1 pl.

    Google Scholar 

  • Calosi P, Bilton DT, Spicer JI, Votier S, Atfield A (2010) What determines a species’ geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). J Anim Ecol 79:194–204

    Article  Google Scholar 

  • Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) (2001) Dispersal. Oxford University Press, Oxford

    Google Scholar 

  • Cohen D, Levin SA (1991) Dispersal in patchy environments: the effects of temporal and spatial structure. Theor Popul Biol 39:63–99

    Article  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York

    Google Scholar 

  • Csabai Z, Boda P, Bernath B, Kriska G, Horvath G (2006) A ‘polarisation sun-dial’ dictates the optimal time of day for dispersal by flying aquatic insects. Freshw Biol 51:1341–1350

    Article  Google Scholar 

  • Csabai Z, Kálmán Z, Szivák I, Boda P (2012) Diel flight behaviour and dispersal patterns of aquatic Coleoptera and Heteroptera species with special emphasis on the importance of seasons. Naturwissenschaften 99:751–765

    Article  CAS  Google Scholar 

  • Désamoré A, Laenen B, Miller KB, Bergsten J (2018) Early burst in body size evolution is uncoupled from species diversification in diving beetles (Dytiscidae). Mol Ecol 27:979–993

    Article  Google Scholar 

  • Diamond JM (1974) Colonisation of exploded volcanic islands by birds: the supertramp strategy. Science 184:803–806

    Article  CAS  Google Scholar 

  • Dieckmann U, O’Hara B, Weisser W (1999) The evolutionary ecology of dispersal. Trends Ecol Evol 14:88–90

    Article  Google Scholar 

  • Elias SA (1997) Quaternary insects and their environments. Smithsonian Institution Press, Washington, 284 p

    Google Scholar 

  • Fernando CH (1958) The colonisation of small aquatic habitats by aquatic insects. 1. General discussion, methods and colonization in the aquatic Coleoptera. Ceylon J Sci Biol Sci 1:117–154

    Google Scholar 

  • Fernando CH, Galbraith D (1973) Seasonality and dynamics of aquatic insects colonising small habitats. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 18:1564–1575

    Google Scholar 

  • Ferriere R, Belthoff JR, Olivieri I, Krackow S (2000) Evolving dispersal: where to go next? Trends Ecol Evol 15:5–7

    Article  CAS  Google Scholar 

  • Florencio M, Díaz-Paniagua C, Serrano L, Bilton DT (2011) Spatio-temporal nested patterns in macroinvertebrate assemblages across a pond network with a wide hydroperiod range. Oecologia 166:469–483

    Article  Google Scholar 

  • Foster GN, Bilton DT, Routledge SD, Eyre MD (2008) The past and present statuses of Hydroporus rufifrons (Müller) (Coleoptera, Dytiscidae) in Great Britain. The Coleopterist 17:51–63

    Google Scholar 

  • Galbreath JE (1975) Thoracic polymorphism in Mesovelia mulsanti (Hemiptera, Mesoveliidae). Kansas Univ Sci Bull 50:457–482

    Google Scholar 

  • Galewski K (1971) A study on morphobiotic adaptations of European species of the Dytiscidae (Coleoptera). Polski Pismo Entomologiczne 41:487–702

    Google Scholar 

  • Gaston KJ (1994) Rarity. Chapman and Hall, London, 205 p

    Google Scholar 

  • Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, Oxford

    Google Scholar 

  • Gaston KJ (2009) Geographic range limits of species. Proc R Soc Lond B 276:1391–1534

    CAS  Google Scholar 

  • Goodliffe FD (1939) The taxonomic value of the wing venation in the larger Dytiscidae (Coleoptera). Trans Soc Br Entomol 6:23–28

    Google Scholar 

  • Green AJ, Sánchez MI (2006) Passive internal dispersal of insect larvae by migratory birds. Biol Lett 2:55–57

    Article  Google Scholar 

  • Hájek J, Shaverdo H, Hendrich L, Balke M (2021) A review of Copelatus diving beetles from the Solomon Islands, reporting the discovery of six new species (Coleoptera, Dytiscidae, Copelatinae). ZooKeys 1023:81–118

    Article  Google Scholar 

  • Hamilton WD, May RM (1977) Dispersal in stable habitats. Nature 269:578–581

    Article  Google Scholar 

  • Hanski I, Moilanen A, Gyllenberg M (1996) Minimum viable metapopulation size. Am Nat 147:527–541

    Article  Google Scholar 

  • Hess M, Heckes U (2004) Zur Wasserkäferfauna der Alpen-Kleinseen im Werdensfelser Land bei Mittenwald/Oberbayern. Lauterbornia 50:39–57

    Google Scholar 

  • Hilsenhoff WL (1986) Life history strategies of some Nearctic Agabini (Coleoptera: Dytiscidae). Entomol Basiliensia 11:385–390

    Google Scholar 

  • Hjalmarsson AE, Bergsten J, Monaghan MT (2015) Dispersal is linked to habitat use in 59 species of water beetles (Coleoptera: Adephaga) on Madagascar. Ecography 38:732–739

    Article  Google Scholar 

  • Hocking B (1952) Autolysis of flight muscle in a mosquito. Nature 169:1101

    Article  CAS  Google Scholar 

  • Hoff C, Brandle M, Brandl R (2006) Lentic odonates have larger and more northern ranges than lotic species. J Biogeogr 33:63–70

    Article  Google Scholar 

  • Hoff C, Brandle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. Glob Ecol Biogeogr 17:539–546

    Article  Google Scholar 

  • Hogg ID, Eadie JM, De Lafontaine Y (1998) Atmospheric change and the diversity of aquatic invertebrates: are we missing the boat? Environ Monit Assess 49:291–301

    Article  Google Scholar 

  • Iversen LL, Rannap R, Thomsen PF, Kielgast J, Sand-Jensen K (2013) How do low dispersal species establish large range sizes? The case of the water beetle Graphoderus bilineatus. Ecography 36:1–8

    Article  Google Scholar 

  • Iversen LL, Rannap R, Briggs L, Sand-Jensen K (2017) Time-restricted flight ability influences dispersal and colonization rates in a group of freshwater beetles. Ecol Evol 7:824–830

    Article  Google Scholar 

  • Jäch MA (1997) Daytime swarming of rheophilic water beetles in Austria (Coleoptera: Elmidae, Hydraenidae, Haliplidae). Latissimus 9:10–11

    Google Scholar 

  • Jackson DJ (1950) Noterus clavicornis DeGeer and N. capricornis Herbst (Col., Dytiscidae) in Fife. Entomologist’s Monthly Magazine 86:39–43

    Google Scholar 

  • Jackson DJ (1952) Observations on the capacity for flight of water beetles. Proc R Entomol Soc Ser A 27:57–70

    Google Scholar 

  • Jackson DJ (1956a) The capacity for flight of certain water beetles and its bearing on their origin in the western Scottish islands. Proc Linn Soc Lond 167:76–96

    Article  Google Scholar 

  • Jackson DJ (1956b) Observations on flying and flightless water beetles. J Linn Soc Lond 43:18–43

    Article  Google Scholar 

  • Jackson DJ (1956c) Observations on water beetles during drought. Entomol Mon Mag 92:154–155

    Google Scholar 

  • Jackson DJ (1956d) Dimorphism of the metasternal wings in Agabus raffrayi Sharp and A. labiatus Brahm (Col., Dytiscidae) and its relation to their capacity for flight. Proc R Entomol Soc Lond A 31:1–11

    Google Scholar 

  • Jackson DJ (1958) Observations on Hydroporus ferrugineus Steph. (Col. Dytiscidae) and some further evidence indicating incapacity for flight. Entomol Gazette 9:55–59

    Google Scholar 

  • Jackson DJ (1973a) Dispersal of Hyphydrus ovatus L. (Col., Dytiscidae). Entomol Mon Mag 108:102–104

    Google Scholar 

  • Jackson DJ (1973b) The influence of flight capacity on the distribution of aquatic Coleoptera in Fife and Kinross-shire. Entomol Gazette 24:247–293

    Google Scholar 

  • Joachim MJ (1978) Late-glacial coleopteran assemblages from the west coast of the Isle of Man. Ph.D. thesis, University of Birmingham

    Google Scholar 

  • Johnson CG (1969) Migration and dispersal of insects by flight. Methuen, London

    Google Scholar 

  • Johnson ML, Gaines MS (1990) Evolution of dispersal: theoretical models and empirical tests using birds and mammals. Annu Rev Ecol Syst 21:449–480

    Article  Google Scholar 

  • Kingsley KJ (1985) Eretes sticticus (Coleoptera: Dytiscidae): life history observations and an account of a remarkable event of synchronous emigration from a temporary desert pond. Coleopt Bull 39:7–10

    Google Scholar 

  • Kirby P, Foster GN (1991) Agabus uliginosus takes off. Balfour–Browne Club Newsletter 49:8–9

    Google Scholar 

  • Kirkpatrick M, Barton NH (1997) The evolution of a species range. Am Nat 150:1–23

    Article  CAS  Google Scholar 

  • Kriska G, Csabai Z, Boda P, Malik P, Horváth G (2006) Why do red and dark-coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection–polarization signals. Proc R Soc Lond Ser B 273:1667–1671

    Google Scholar 

  • Kubisch A, Degen T, Hovestadt T, Poethke HJ (2013) Predicting range shifts under global change: the balance between local adaptation and dispersal. Ecography 36:873–882

    Article  Google Scholar 

  • Lam A, Toussaint EFA, Kindler C, Van Dam MH, Panjaitan R, Roderick G, Balke M (2018) Stream flow alone does not predict population structure of diving beetles across complex tropical landscapes. Mol Ecol 27:3541–3554

    Article  Google Scholar 

  • Landin J (1968) Weather and diurnal periodicity of flight by Helophorus brevipalpis Bedel (Col. Hydrophilidae). Opusc Entomol 33:28–36

    Google Scholar 

  • Landin J (1980) Habitats, life histories, migration and dispersal by flight of two water beetles Helophorus brevipalpis and H. strigifrons (Hydrophilidae). Holarct Ecol 3:190–201

    Google Scholar 

  • Landin J, Stark E (1973) On flight thresholds for temperature and wind velocity, 24-hour flight periodicity and migration of the water beetle Helophorus brevipalpis Bedel (Col. Hydrophilidae). Zoon Suppl 1:105–114

    Google Scholar 

  • Leech HB (1942) Dimorphism in the flying wings of a species of water beetle, Agabus bifarius (Kirby). Ann Entomol Soc Am 35:76–80

    Article  Google Scholar 

  • Levin SA, Cohen D, Hastings A (1984) Dispersal strategies in patchy environments. Theor Popul Biol 36:165–191

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Malmqvist B (2000) How does wing length relate to distribution patterns of stoneflies (Plecoptera) and mayflies (Ephemeroptera)? Biol Conserv 93:271–276

    Article  Google Scholar 

  • Matushima R, Yokoi T (2020) Flight capacities of three species of diving beetles (Coleoptera: Dytiscidae) estimated in a flight mill. Aquat Insect 41:332–338

    Article  Google Scholar 

  • McAbendroth L, Foggo A, Rundle SD, Bilton DT (2005) Unravelling nestedness and spatial pattern in pond assemblages. J Anim Ecol 74:41–49

    Article  Google Scholar 

  • McNamara SC, Pintar MR, Resetarits WJ Jr (2020) Temperature but not nutrient addition affects abundance and assemblage structure of colonizing aquatic insects. Ecology 102:e03209

    Google Scholar 

  • McPeek MA, Holt RD (1992) The evolution of dispersal in spatially and temporally varying environments. Am Nat 140:1010–1027

    Article  Google Scholar 

  • Miguélez D, Valladares LF (2008) Seasonal dispersal of water beetles (Coleoptera) in an agricultural landscape: a study using Moericke traps in northwest Spain. Ann Soc Entomol Fr 44:317–326

    Article  Google Scholar 

  • Miller KB (2013) Notes on flight and respiration at the water surface by Hygrotus salinarius (Wallis) (Coleoptera: Dytiscidae). Coleopt Bull 67:444–446

    Article  Google Scholar 

  • Monaghan MT, Balke M, Pons J, Vogler AP (2005) Beyond barcodes: complex DNA taxonomy of a South Pacific Island radiation. Philos Trans R Soc Ser B 273:887–893

    Google Scholar 

  • Moronière J, Michat MC, Jäch MA, Bergsten J, Hendrich L, Balke M (2015) Anisomeriini diving beetles—an Atlantic–Pacific Island disjunction on Tristan da Cunha and Robinson Crusoe Island, Juan Fernández? Cladistics 31:166–176

    Article  Google Scholar 

  • Nilsson AN (1997) On flying Hydroporus and the attraction of H. incognitus to red car roofs. Latissimus 9:12–16

    Google Scholar 

  • Nilsson AN, Söderström O (1988) Larval consumption rates, interspecific predation, and local guild composition of egg-overwintering Agabus (Coleoptera, Dytiscidae) species in vernal ponds. Oecologia 76:131–137

    Article  Google Scholar 

  • Nilsson AN, Svensson BW (1992) Taking off in cold blood. - Dytiscus marginalis flying at 6.4 °C. Balfour-Browne Club Newsletter 50:1–2

    Google Scholar 

  • Pallares S, Arribas P, Cespedes V, Millán A, Velasco J (2012) Lethal and sublethal behavioural responses of saline water beetles to acute heat and osmotic stress. Ecol Entomol 37:508–520

    Article  Google Scholar 

  • Peters JC (1972) The ecology of Tarn Dub. The Vasculum 57:42–50

    Google Scholar 

  • Picazo F, Bilton DT, Moreno JL, Sánchez-Fernández D, Millán A (2011) Water beetle biodiversity in Mediterranean standing waters: assemblage composition, environmental drivers and nestedness patterns. Insect Conserv Divers.

    Google Scholar 

  • Pintar MR, Resetarits WJ Jr (2017) Context-dependent colonization dynamics: regional reward contagion drives local compression in aquatic beetles. J Anim Ecol 86:1124–1135

    Article  Google Scholar 

  • Pintar MR, Bohenek JR, Eveland LL, Jnr RWJ (2018) Colonization across gradients of risk and reward: Nutrients and predators generate species-specific responses among aquatic insects. Funct Ecol 32:1589–1598

    Article  Google Scholar 

  • Pitcher KA, Yee DA (2014) Investigating habitat use, prey consumption, and dispersal response as potential coexistence mechanisms using morphologically similar species of predaceous diving beetles (Coleoptera: Dytiscidae). Ann Entomol Soc Am 107:582–591

    Article  Google Scholar 

  • Pitcher KA, Yee DA (2018) The predaceous diving beetle fauna (Coleoptera: Dytiscidae) in highway-associated aquatic habitats in southern Mississippi, USA. Coleopt Bull 72:525–530

    Article  Google Scholar 

  • Remmers W, Gameiro J, Schaberl I, Clausnitzer V (2017) Elephant (Loxodonta africana) footprints as habitat for aquatic macroinvertebrate communities in Kibale National Park, south-west Uganda. Afr J Zool 55:342–351

    Google Scholar 

  • Resetarits WJ Jr (2001) Colonization under threat of predation: avoidance of fish by an aquatic beetle, Tropisternus lateralis (Coleoptera: Hydrophilidae). Oecologia 129:155–160

    Article  Google Scholar 

  • Resetarits WJ Jr, Binckley CA (2014) Species responses of colonising beetles to variation in patch quality, number, and context in experimental aquatic landscapes. Ecol Entomol 39:226–235

    Article  Google Scholar 

  • Ribera I (2008) Habitat constraints and the generation of diversity in freshwater macroinvertebrates, Chap. 15. In: Lancaster J, Briers RA (eds) Aquatic insects: challenges to populations. CAB International, pp 289–311

    Chapter  Google Scholar 

  • Ribera I, Vogler AP (2000) Habitat type as a determinant of species range sizes: the example of lotic-lentic differences in aquatic Coleoptera. Biol J Linn Soc 71:33–52

    Google Scholar 

  • Ribera I, Bilton DT, Balke M, Hendrich L (2003) Evolution, mitochondrial DNA phylogeny and systematic position of the Macaronesian endemic Hydrotarsus Falkenström (Coleoptera: Dytiscidae). Syst Entomol 28:493–508

    Article  Google Scholar 

  • Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231–253

    Article  Google Scholar 

  • Rundle SD, Bilton DT, Abbott JC, Foggo A (2007) Range size in North American Enallagma damselflies correlates with wing size. Freshw Biol 52:471–477

    Article  Google Scholar 

  • Sánchez-Fernández D, Lobo JM, Millán A, Ribera I (2012a) Habitat persistence mediates time to equilibrium in the geographical distribution of Iberian diving beetles. Glob Ecol Biogeogr 21:988–997

    Article  Google Scholar 

  • Sánchez-Fernández D, Aragón P, Bilton DT, Lobo JM (2012b) Assessing the congruence of thermal niche estimations derived from distribution and physiological data. A test using diving beetles. PLoS One 7:e48163

    Article  Google Scholar 

  • Shaverdo HC, Hendrich L, Balke M (2013) Exocelina baliem sp. n., the only known pond species of New Guinea Exocelina Broun, 1886 (Coleoptera, Dytiscidae, Copelatinae). Zookeys 304:83–99

    Article  Google Scholar 

  • Short AEZ, Caterino MS (2009) On the validity of habitat as a predictor of genetic structure in aquatic systems: a comparative study using California water beetles. Mol Ecol 18:403–414

    Article  CAS  Google Scholar 

  • Slatyer RA, Hirst M, Sexton JP (2013) Niche breadth predicts geographical range size: a general ecological pattern. Ecol Lett 16:1104–1114

    Article  Google Scholar 

  • Smith DS (1964) The structure and development of flightless wings, thoracic exoskeleton and rudimentary flight musculature. J Morphol 114:107–184

    Article  Google Scholar 

  • Spangler PJ (1986) Stygofauna Mundi. A faunistic, distributional, and ecological synthesis of the world fauna inhabiting subterranean water (including the Marine Interstitial). In: Botosaneanu L (ed) Insecta: Coleoptera. E.J. Brill, Leiden, pp 622–631

    Google Scholar 

  • Spangler PJ, Gordon RD (1973) Description of the larvae of some predaceous water beetles (Coleoptera: Dytiscidae). Proc Biol Soc Wash 86:261–278

    Google Scholar 

  • Stevens LE, Polhemus JT, Durfee RS, Olson CA (2007) Large mixed-species dispersal flights of predatory and scavenging aquatic Heteroptera and Coleoptera, Northern Arizona, USA. West N Am Nat 67:587–592

    Article  Google Scholar 

  • Svensson BW (1998) Local dispersal and its life-history consequences in a rock-pool population of a gyrinid beetle. Oikos 82:111–122

    Article  Google Scholar 

  • Svensson BW (1999) Environmental heterogeneity in space and time: patch use, recruitment and dynamics of a rock pool population of a gyrinid beetle. Oikos 84:227–238

    Article  Google Scholar 

  • Van der Eijk RH (1983) Population dynamics of gyrinid beetles. I. Flight activity of Gyrinus marinus Gyll. (Col., Gyrinidae). Oecologia 57:55–64

    Article  Google Scholar 

  • Velasco J, Millán A (1998) Insect dispersal in a drying desert stream: effects of temperature and water loss. Southwest Nat 43:80–87

    Google Scholar 

  • Verberk WCEP, Bilton DT (2013) Respiratory control in aquatic insects dictates their vulnerability to global warming. Biol Lett 9:20130473

    Article  Google Scholar 

  • Vergnon R, Leijs R, van Nes EH, Scheffer M (2013) Repeated parallel evolution reveals limiting similarity in subterranean diving beetles. Am Nat 182:65–75

    Article  Google Scholar 

  • Vespäläin K (1978) Wing dimorphism and diapause in Gerris: determination and adaptive significance. In: Dingle H (ed) Evolution of insect migration and diapause. Springer, New York, pp 218–253

    Google Scholar 

  • Villastrigo A, Abellán P, Ribera I (2021) Habitat preference and diversification rates in a speciose lineage of diving beetles. Mol Phylogenet Evol 159:107087.

    Article  Google Scholar 

  • Wallace AR (1869) The Malay Archipelago. MacMillan & Co, London

    Google Scholar 

  • Weigelhofer G, Weissmair W, Waringer J (1992) Night migration activity and the influence of meteorological parameters on light-trapping for aquatic Heteroptera. Zool Anz 229:209–218

    Google Scholar 

  • Williams DD (2005) The biology of temporary waters. Oxford University Press, Oxford

    Book  Google Scholar 

  • Yee DA, Taylor S, Vamosi SM (2009) Beetle and plant density as cues initiating dispersal in two species of adult predaceous diving beetles. Oecologia 160:25–36

    Article  Google Scholar 

  • Young FN (1960) The water beetles of a temporary pond in southern Indiana. Proc Indian Acad Sci 69:154–164

    Google Scholar 

  • Zalom FG, Grigarick AA, Way MO (1980) Diel flight periodicities of some Dytiscidae (Coleoptera) associated with California rice paddies. Ecol Entomol 5:183–187

    Article  Google Scholar 

  • Zera AJ, Denno RF (1997) Physiology and ecology of dispersal polymorphism in insects. Annu Rev Entomol 42:207–230

    Article  CAS  Google Scholar 

  • Zera AJ, Zhao ZW (2003) Life-history evolution and the microevolution of intermediary metabolism: Activities of lipid-metabolizing enzymes in life-history morphs of a wing-dimorphic cricket. Evolution 57:586–596

    CAS  Google Scholar 

Download references

Acknowledgements

Geoff Nobes is thanked for allowing me to use his excellent photo of Rhantus suturalis in flight in Fig. 11.6, Jonty Denton is acknowledged for use of his photos of R. suturalis and Agabus bipustulatus, and Franz Hebauer for Hydroporus rufifrons. I am grateful to Garth Foster for supplying the maps used in Fig. 11.6 (produced in David Morton’s DMAP programme), and Michael Balke for providing an earlier version of much of Fig. 11.5. The late Ignacio Ribera kindly commented on the section on lentic–lotic divides. Finally, thanks to Don Yee for the invitations and his continued patience!

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Bilton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bilton, D.T. (2023). Dispersal in Dytiscidae. In: Yee, D.A. (eds) Ecology, Systematics, and the Natural History of Predaceous Diving Beetles (Coleoptera: Dytiscidae). Springer, Cham. https://doi.org/10.1007/978-3-031-01245-7_11

Download citation

Publish with us

Policies and ethics