Skip to main content

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 293))

  • 1190 Accesses

Abstract

Subadditivity of a sequence of positive real numbers x 1, … refers to the property x m+n ≤ x m + x n, n ≥ 1. For such sequences, it is a calculus exercise to verify that \(\lim _{n\to \infty }{x_n\over n} = \inf _{m\ge 1}{x_m\over m}\). The extension of this notion to almost sure convergence of a corresponding class of stochastic processes is the objective of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Fekete (1923).

  2. 2.

    Kingman (1976) provided the initial breakthrough in exploiting subadditivity for an ergodic theory of stationary processes. Liggett (1985) provided the strengthening given here and finds applications for which the hypothesis of Kingman is too strong. The original version of Kingman contains assumption (d), but he required the conditions that Z m,k + Z k,n ≥ Z m,n, m = 2, …, n − 1, and that the distribution of {Z m+k,n+k : m = 0,  1, …, n − 1} be independent of k. These prove to be too strong for some applications.

  3. 3.

    The proof here follows Kallenberg (2002) and Durrett (1991).

  4. 4.

    BCPT, p.17.

  5. 5.

    BCPT, pp. 142–145.

  6. 6.

    From the perspective of subadditivity, this example illustrates the need for the generalization provided by Liggett (1985,b).

  7. 7.

    See Dascaliuc et al. (2022a) for related calculations.

  8. 8.

    Furstenberg and Kesten (1960).

  9. 9.

    This purely mathematical result has important consequences in physics where it is used to quantify important notions of disorder and localization. Comtet et al. (2013) provide a readable review from this perspective.

  10. 10.

    Hammersley and Welsh, (1965). Also see Auffinger et al. (2017) .

  11. 11.

    See Key (1987) and the references therein for examples and illustrative applications of the maximal Lyapunov exponent.

References

  • Auffinger A, Damron M, Hanson J (2017) 50 years of first-passage percolation, vol 68. Am Math Soc

    Google Scholar 

  • Bhattacharya R, Waymire E (2021) Random walk, Brownian motion, and martingales. Graduate text in mathematics. Springer, New York

    Google Scholar 

  • Comtet A, Texier C, Touriguy Y (2013) Lyapunov exponents, one-dimensional Anderson localization and products of random matrices. J Phys A: Math Theor 46:254003

    Article  MathSciNet  MATH  Google Scholar 

  • Dascaliuc R, Pham T, Thomann E, Waymire E (2022a) Doubly stochastic yule cascades (part I): the explosion problem in the time-reversible case. J Funct Anal. in press

    Google Scholar 

  • Durrett R (1991) Probability theory and examples, 2nd edn. Wadsworth, Brooks & Cole, Pacific, Grove

    MATH  Google Scholar 

  • Fekete M (1923) Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Mathematische Zeitschrift 17(1):228–249

    Article  MathSciNet  MATH  Google Scholar 

  • Furstenberg H, Kesten H (1960) Products of random matrices. Ann Math Statist 31:451–469

    Article  MathSciNet  MATH  Google Scholar 

  • Hammersley JM, Welsh DJA (1965) First passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In: Bernoulli–Bayes–Laplace Anniversary Volume. Springer, Berlin, pp 61–110

    Google Scholar 

  • Key E (1987) Computable examples of the maximal Lyapunov exponent. Probab Theory Rel. Fields 75(1):97–107

    Article  MathSciNet  MATH  Google Scholar 

  • Kingman JFC (1976) Subadditive ergodic theory. Ann Probab 883–909

    Google Scholar 

  • Liggett TM (1985) Interacting particle systems. Springer, New York

    Book  MATH  Google Scholar 

  • Liggett TM (1985) An improved subadditive ergodic theorem. Ann Probab 13(5):1279–1285

    MathSciNet  MATH  Google Scholar 

  • Kallenberg O (2002) Foundations of modern probability, 2nd edn. Springer, NY

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharya, R., Waymire, E. (2022). Subadditive Ergodic Theory. In: Stationary Processes and Discrete Parameter Markov Processes. Graduate Texts in Mathematics, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-031-00943-3_5

Download citation

Publish with us

Policies and ethics