Skip to main content

Clinical Approach to Stress

  • Chapter
  • First Online:
Neuroscience of Stress

Abstract

Stress is associated with different emotional states, where fear and anxiety are the most commonly experienced during stressful situations. Fear plays a critical role in rapid reactions to perceived threats, preparing the organism for immediate responses to face potential dangers, including the ability to get ready to cope with adversity or to escape. It may be an adaptive emotion, but chronic and uncontrollable fear has been associated with the origin and development of anxiety, which is characterized by anticipated fear and uncertainty, associated with threatening events. Anxiety may contribute to improve adaptive responses, stimulating attention and arousal, shaping cognitive processes involved in different coping strategies. If anxiety continues longer, as it is observed during chronic stress, it may interfere with cognitive and emotional processes, which, in turn, may lead to the origin and development of chronic and severe anxiety disorders. Chronic stress, mostly produced by the impact of unavoidable and uncontrollable conditions, may lead to learned helplessness, which has been associated with the origin and development of depression. Chronic stress may lead to hyper-activation of the hypothalamic-pituitary-adrenal (HPA) axis, with the resulting increased levels of cortisol, and various aminergic systems are also involved in this process, including the serotonergic, the dopaminergic and the noradrenergic systems, which, in turn, are also interconnected with cortical and limbic structures. The amygdala plays a critical role in identifying potentially stressful stimuli and detecting present threats or imminent danger, which therefore contributes to activating the necessary adaptive responses. It represents the main structure of an adaptive neural circuit involved in cognitive and emotional processing, which includes reciprocal connections with other neural structures, such as the hippocampus, the bed nucleus of the stria terminalis (BNST) and different areas of the prefrontal cortex (PFC). Activation of the amygdala, associated with feelings of fear and anxiety, may be neutralized by the ventro-medial PFC (VM-PFC), which has been involved in decreasing learned helplessness and the resulting learned control, consolidating neural pathways involved in predictability and controllability, which are crucial for the development of resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alenina, N., & Klempin, F. (2015). The role of serotonin in adult hippocampal neurogenesis. Behavioural Brain Research, 277, 49–57.

    Article  PubMed  Google Scholar 

  • Arborelius, L., Owens, M. J., Plotsky, P. M., et al. (1999). The role of corticotropin-releasing factor in depression and anxiety disorders. The Journal of Endocrinology, 160, 1–12.

    Article  PubMed  Google Scholar 

  • Arnsten, A. F. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10(6), 410–422.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baik, J. H. (2020). Stress and the dopaminergic reward system. Experimental & Molecular Medicine, 52(12), 1879–1890.

    Article  Google Scholar 

  • Bailey, T. W., & Dimicco, J. A. (2001). Chemical stimulation of the dorsomedial hypothalamus elevates plasma ACTH in conscious rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 280, R8–R15.

    Article  PubMed  Google Scholar 

  • Baratta, M. V., Zarza, C. M., Gomez, D. M., Campeau, S., Watkins, L. R., & Maier, S. F. (2009). Selective activation of dorsal raphe nucleus-projecting neurons in the ventral medial prefrontal cortex by controllable stress. The European Journal of Neuroscience, 30(6), 1111–1116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baumeister, D., Lightman, S. L., & Pariante, C. M. (2014). The interface of stress and the HPA axis in behavioural phenotypes of mental illness. Current Topics in Behavioral Neurosciences, 18, 13–24.

    Article  PubMed  Google Scholar 

  • Beck, A. T. (2008). The evolution of the cognitive model of depression and its neurobiological correlates. The American Journal of Psychiatry, 165, 969–977.

    Article  PubMed  Google Scholar 

  • Binder, E. B., Salyakina, D., Lichtner, P., et al. (2004). Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nature Genetics, 36, 1319–1325.

    Article  PubMed  Google Scholar 

  • Bouret, S., Duvel, A., Onat, S., & Sara, S. J. (2003). Phasic activation of locus coeruleus neurons by the central nucleus of the amygdala. Journal of Neuroscience, 23(8), 3491–3497.

    Article  PubMed  Google Scholar 

  • Bradley, R. G., Binder, E. B., Epstein, M. P., et al. (2008). Influence of child abuse on adult depression: Moderation by the corticotropin-releasing hormone receptor gene. Archives of General Psychiatry, 65, 190–200.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buijs, R. M., & Van Eden, C. G. (2000). The integration of stress by the hypothalamus, amygdala and prefrontal cortex: Balance between the autonomic nervous system and the neuroendocrine system. Progress in Brain Research, 126, 117–132.

    Article  PubMed  Google Scholar 

  • Cabib, S., & Puglisi-Allegra, S. (2012). The mesoaccumbens dopamine in coping with stress. Neuroscience and Biobehavioral Reviews, 36(1), 79–89.

    Article  PubMed  Google Scholar 

  • Canteras, N. S. (2002). The medial hypothalamic defensive system: Hodological organization and functional implications. Pharmacology, Biochemistry, and Behavior, 71, 481–491.

    Article  PubMed  Google Scholar 

  • Capuron, L., & Miller, A. H. (2011). Immune system to brain signaling: Neuropsychopharmacological implications. Pharmacology & Therapeutics, 130, 226–238.

    Article  Google Scholar 

  • Cardinal, R. N., Parkinson, J. A., Hall, J., & Everitt, B. J. (2002). Emotion and motivation: The role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience and Biobehavioral Reviews, 26(3), 321–352.

    Article  PubMed  Google Scholar 

  • Caspi, A., Sugden, K., Moffitt, T. E., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386–389.

    Article  PubMed  Google Scholar 

  • Cattaneo, A., Macchi, F., Plazzotta, G., et al. (2015). Inflammation and neuronal plasticity: A link between childhood trauma and depression pathogenesis. Frontiers in Cellular Neuroscience, 40, 1–12.

    Google Scholar 

  • Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Reviews. Endocrinology, 5(7), 374–381.

    Article  PubMed  Google Scholar 

  • Choi, D. C., Furay, A. R., Evanson, N. K., Ostrander, M. M., Ulrich-Lai, Y. M., & Herman, J. P. (2007). Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic-pituitary-adrenal axis activity: Implications for the integration of limbic inputs. The Journal of Neuroscience, 27(8), 2025–2034.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciocchi, S., Herry, C., Grenier, F., Wolff, S. B., Letzkus, J. J., Vlachos, I., Ehrlich, I., Sprengel, R., Deisseroth, K., Stadler, M. B., Müller, C., & Lüthi, A. (2010). Encoding of conditioned fear in central amygdala inhibitory circuits. Nature, 468(7321), 277–282.

    Article  PubMed  Google Scholar 

  • Commons, K. G., Connolley, R. K., & Valentino, R. J. A. (2003). Neurochemically distinct dorsal raphe-limbic circuit with a potential role in affective disorders. Neuropsychopharmacology, 28, 206–215.

    Article  PubMed  Google Scholar 

  • Cooper, J. C., & Knutson, B. (2008). Valence and salience contribute to nucleus accumbens activation. NeuroImage, 39(1), 538–547.

    Article  PubMed  Google Scholar 

  • Craig, K. J., Brown, K. J., & Baum, A. (1995). Environmental factors in the etiology of anxiety. In F. E. Bloom & D. J. Kupfer (Eds.), Psychopharmacology: The fourth generation of progress (pp. 1325–1339). Raven Press.

    Google Scholar 

  • Cullinan, W. E., Herman, J. P., & Watson, S. J. (1993). Ventral subicular interaction with the hypothalamic paraventricular nucleus: Evidence for a relay in the bed nucleus of the stria terminalis. Journal of Comparative Neurology, 332(1), 1–20.

    Article  PubMed  Google Scholar 

  • Davis, M., Walker, D., Miles, L., & Grillon, C. (2010). Phasic vs sustained fear in rats and humans: Role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology, 35, 105–135.

    Article  PubMed  Google Scholar 

  • Daviu, N., Bruchas, M. R., Moghaddam, B., Sandi, C., & Beyeler, A. (2019). Neurobiological links between stress and anxiety. Neurobiology of Stress., 11, 100191.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Lima, M. A. X., Baldo, M. V. C., & Canteras, N. S. (2019). Revealing a cortical circuit responsive to predatory threats and mediating contextual fear memory. Cerebral Cortex, 29, 3074–3090.

    Article  PubMed  Google Scholar 

  • De Rijk, R. H., Schaaf, M., & de Kloet, E. R. (2012). Glucocorticoid receptor variants: Clinical implications. The Journal of Steroid Biochemistry and Molecular Biology, 81, 103–122.

    Google Scholar 

  • Deakin, J. F., & Graeff, F. G. (1991). 5-HT and mechanisms of defence. Journal of Psychopharmacology, 5(4), 305–315.

    Article  PubMed  Google Scholar 

  • Deakin, J. F. W., & Graeff, F. G. (1991). 5 HT and mechanisms of defense. Journal of Psychopharmacology, 5, 305–331.

    Article  PubMed  Google Scholar 

  • Delgado, M. R., Nearing, K. I., Ledoux, J. E., & Phelps, E. A. (2008). Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron, 59(5), 829–838.

    Article  PubMed  PubMed Central  Google Scholar 

  • Der-Avakian, A., & Markou, A. (2012). The neurobiology of anhedonia and other reward-related deficits. Trends in Neurosciences, 35(1), 68–77.

    Article  PubMed  Google Scholar 

  • DiMicco, J. A., Samuels, B. C., Zaretskaia, M. V., & Zaretsky, D. V. (2002). The dorsomedial hypothalamus and the response to stress: Part renaissance, part revolution. Pharmacology, Biochemistry, and Behavior, 71(3), 469–480.

    Article  PubMed  Google Scholar 

  • Diorio, D., Viau, V., & Meaney, M. J. (1993). The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamo-pituitary-adrenal responses to stress. The Journal of Neuroscience, 13, 3839–3847.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong, H. W., & Swanson, L. W. (2004). Projections from bed nuclei of the stria terminalis, posterior division: Implications for cerebral hemisphere regulation of defensive and reproductive behaviors. The Journal of Comparative Neurology, 471(4), 396–433.

    Article  PubMed  Google Scholar 

  • Dong, H. W., Petrovich, G. D., & Swanson, L. W. (2001). Topography of projections from amygdala to bed nuclei of the stria terminalis. Brain Research Reviews, 38(1–2), 192–246.

    Article  PubMed  Google Scholar 

  • Drevets, W. C., Gautier, C., Price, J. C., Kupfer, D. J., Kinahan, P. E., Grace, A. A., Price, J. L., & Mathis, C. A. (2001). Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biological Psychiatry, 49, 81–96.

    Article  PubMed  Google Scholar 

  • Duman, R. S. (2004). Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Medicine, 5, 11–25.

    Article  PubMed  Google Scholar 

  • Duman, R. S., & Charney, D. S. (1999). Cell atrophy and loss in major depression. Biological Psychiatry, 45(9), 1083–1084.

    PubMed  Google Scholar 

  • Duman, R. S., & Monteggia, L. M. (2006). A neurotrophic model for stress-related mood disorders. Biological Psychiatry, 59, 1116–1127.

    Article  PubMed  Google Scholar 

  • Dunlop, B. W., & Nemeroff, C. B. (2007). The role of dopamine in the pathophysiology of depression. Archives of General Psychiatry, 64(3), 327–337.

    Article  PubMed  Google Scholar 

  • Evans, G. W., Swain, J. E., King, A. P., Wang, X., Javanbakht, A., Ho, S. S., Angstadt, M., Phan, K. L., Xie, H., & Liberzon, I. (2016). Childhood cumulative risk exposure and adult amygdala volume and function. Journal of Neuroscience Research, 94(6), 535–543.

    Article  PubMed  Google Scholar 

  • Feldman, S., Newman, M. E., & Weidenfeld, J. (2000). Effects of adrenergic and serotonergic agonists in the amygdala on the hypothalamo-pituitary-adrenocortical axis. Brain Research Bulletin, 52, 531–536.

    Article  PubMed  Google Scholar 

  • Ferguson, A. V., Latchford, K. J., & Samson, W. K. (2008). The paraventricular nucleus of the hypothalamus – A potential target for integrative treatment of autonomic dysfunction. Expert Opinion on Therapeutic Targets, 12(6), 717–727.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiddick, L. (2011). There is more than the amygdala: Potential threat assessment in the cingulate cortex. Neuroscience and Biobehavioral Reviews, 35(4), 1007–1018.

    Article  PubMed  Google Scholar 

  • Figueiredo, H. F., Bruestle, A., Bodie, B., Dolgas, C. M., & Herman, J. P. (2003). The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor. The European Journal of Neuroscience, 18, 2357–2364.

    Article  PubMed  Google Scholar 

  • Fitzgerald, D. A., Angstadt, M., Jelsone, L. M., et al. (2006). Beyond threat: Amygdala reactivity across multiple expressions of facial affect. NeuroImage, 30(4), 1441–1448.

    Article  PubMed  Google Scholar 

  • Folkman, S., & Lazarus, R. S. (1988). The relationship between coping and emotion: Implications for theory and research. Social Science & Medicine, 26, 309–317.

    Article  Google Scholar 

  • Forster, G. L., Feng, N., Watt, M. J., Korzan, W. J., Mouw, N. J., Summers, C. H., & Renner, K. J. (2006). Corticotropin-releasing factor in the dorsal raphe elicits temporally distinct serotonergic responses in the limbic system in relation to fear behavior. Neuroscience, 141(2), 1047–1055.

    Article  PubMed  Google Scholar 

  • Gatt, J. M., Nemeroff, C. B., Dobson-Stone, C., et al. (2009). Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Molecular Psychiatry, 14, 681–695.

    Article  PubMed  Google Scholar 

  • Geuze, E., Van Wingen, G. A., Van Zuiden, M., Rademaker, A. R., Vermetten, E., Kavelaars, A., Fernandez, G., & Heijnen, C. J. (2012). Glucocorticoid receptor number predicts increase in amygdala activity after severe stress. Psychoneuroendocrinology, 37, 1837–1844.

    Article  PubMed  Google Scholar 

  • Glatz, K., Mössner, R., Heils, A., & Lesch, K. P. (2003). Glucocorticoid-regulated human serotonin transporter (5-HTT) expression is modulated by the 5-HTT gene-promotor-linked polymorphic region. Journal of Neurochemistry, 86(5), 1072–1078.

    Article  PubMed  Google Scholar 

  • Gotlib, I. H., Joormann, J., Minor, K., et al. (2008). HPA axis reactivity: A mechanism underlying the associations among 5-HTTLPR, stress, and depression. Biological Psychiatry, 63, 847–851.

    Article  PubMed  Google Scholar 

  • Graeff, F. G., Guimarães, F. S., De Andrade, T. G., & Deakin, J. F. (1996). Role of 5-HT in stress, anxiety, and depression. Pharmacology, Biochemistry, and Behavior, 54(1), 129–141.

    Article  PubMed  Google Scholar 

  • Gray, T. S., Carney, M. E., & Magnuson, D. J. (1989). Direct projections from the central amygdaloid nucleus to the hypothalamic paraventricular nucleus: Possible role in stress-induced adrenocorticotropin release. Neuroendocrinology, 50(4), 433–446.

    Article  PubMed  Google Scholar 

  • Guadagno, A., Belliveau, C., Mechawar, N., & Walker, C. D. (2021). Effects of early life stress on the developing basolateral amygdala-prefrontal cortex circuit: The emerging role of local inhibition and perineuronal nets. Frontiers in Human Neuroscience, 15, 669120.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 4–26.

    Article  PubMed  Google Scholar 

  • Hammack, S. E., Guo, J. D., Hazra, R., Dabrowska, J., Myers, K. M., & Rainnie, D. G. (2009). The response of neurons in the bed nucleus of the stria terminalis to serotonin: Implications for anxiety. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33(8), 1309–1320.

    Article  Google Scholar 

  • Hamon, M., & Blier, P. (2013). Monoamine neurocircuitry in depression and strategies for new treatments. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 45, 54–63.

    Article  Google Scholar 

  • Hariri, A. R., Mattay, V. S., Tessitore, A., et al. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science, 297, 400–403.

    Article  PubMed  Google Scholar 

  • Hariri, A. R., Drabant, E. M., Munoz, K. E., et al. (2005). A susceptibility gene for affective disorders and the response of the human amygdala. Archives of General Psychiatry, 62, 146–152.

    Article  PubMed  Google Scholar 

  • Haroon, E., Raison, C. L., & Miller, A. H. (2012). Psychoneuroimmunology meets neuropsychopharmacology: Translational implications of the impact of inflammation on behavior. Neuropsychopharmacology, 37, 137–162.

    Article  PubMed  Google Scholar 

  • Heim, C., & Binder, E. B. (2012). Current research trends in early life stress and depression: Review of human studies on sensitive periods, gene–environment interactions, and epigenetics. Experimental Neurology, 233, 102–111.

    Article  PubMed  Google Scholar 

  • Heim, C., & Nemeroff, C. B. (2001). The role of childhood trauma in the neurobiology of mood and anxiety disorders: Preclinical and clinical studies. Biological Psychiatry, 49, 1023–1039.

    Article  PubMed  Google Scholar 

  • Heim, C., Newport, D. J., Mletzko, T., et al. (2008). The link between childhood trauma and depression: Insights from HPA axis studies in humans. Psychoneuroendocrinology, 33, 693–710.

    Article  PubMed  Google Scholar 

  • Herman, J. P., Cullinan, W. E., Ziegler, D. R., & Tasker, J. G. (2002). Role of the paraventricular nucleus microenvironment in stress integration. The European Journal of Neuroscience, 16, 381–385.

    Article  PubMed  Google Scholar 

  • Holsboer, F. (2000). The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology, 23, 477–501.

    Article  PubMed  Google Scholar 

  • Horstmann, S., Lucae, S., Menke, A., et al. (2010). Polymorphisms in GRIK4, HTR2A, and FKBP5 show interactive effects in predicting remission to antidepressant treatment. Neuropsychopharmacology, 35, 727–740.

    Article  PubMed  Google Scholar 

  • Ikemoto, S., & Panksepp, J. (1999). The role of nucleus accumbens dopamine in motivated behavior: A unifying interpretation with special reference to reward-seeking. Brain Research. Brain Research Reviews, 31(1), 6–41.

    Article  PubMed  Google Scholar 

  • Janak, P. H., & Tye, K. M. (2015). From circuits to behaviour in the amygdala. Nature, 517(7534), 284–292.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalin, N. H. (2020). Novel insights into pathological anxiety and anxiety-related disorders. The American Journal of Psychiatry, 177(3), 187–189.

    Article  PubMed  Google Scholar 

  • Karg, K., Burmeister, M., Shedden, K., & Sen, S. (2011). The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Archives of General Psychiatry, 68, 444–454.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kassel, O., & Herrlich, P. (2007). Crosstalk between the glucocorticoid receptor and other transcription factors: Molecular aspects. Molecular and Cellular Endocrinology, 275, 13–29.

    Article  PubMed  Google Scholar 

  • Kaufman, J., Plotsky, P. M., Nemeroff, C. B., et al. (2000). Effects of early adverse experiences on brain structure and function: Clinical implications. Biological Psychiatry, 48, 778–790.

    Article  PubMed  Google Scholar 

  • Kaufman, J., Yang, B. Z., Douglas-Palumberi, H., et al. (2006). Brain-derived neurotrophic factor-5-HTTLPR gene interactions and environmental modifiers of depression in children. Biological Psychiatry, 59, 673–680.

    Article  PubMed  Google Scholar 

  • Kendler, K. S., Kuhn, J. W., & Prescott, C. A. (2004). Childhood sexual abuse, stressful life events and risk for major depression in women. Psychological Medicine, 34, 1475–1482.

    Article  PubMed  Google Scholar 

  • Kessler, R. C. (1997). The effects of stressful life events on depression. Annual Review of Psychology, 48, 191–214.

    Article  PubMed  Google Scholar 

  • Korosi, A., Naninck, E. F., Oomen, C. A., et al. (2012). Early-life stress mediated modulation of adult neurogenesis and behavior. Behavioural Brain Research, 227, 400–409.

    Article  PubMed  Google Scholar 

  • Kreier, F., Kap, Y. S., Mettenleiter, T. C., van Heijningen, C., van der Vliet, J., Kalsbeek, A., Sauerwein, H. P., Fliers, E., Romijn, J. A., & Buijs, R. M. (2006). Tracing from fat tissue, liver, and pancreas: A neuroanatomical framework for the role of the brain in type 2 diabetes. Endocrinology, 147(3), 1140–1147.

    Article  PubMed  Google Scholar 

  • Krishnan, V., & Nestler, E. J. (2010). Linking molecules to mood: New insight into the biology of depression. The American Journal of Psychiatry, 167(11), 1305–1320.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krugers, H. J., Lucassen, P. J., Karst, H., & Joëls, M. (2010). Chronic stress effects on hippocampal structure and synaptic function: Relevance for depression and normalization by anti-glucocorticoid treatment. Frontiers in Synaptic Neuroscience, 2, 24.

    PubMed  PubMed Central  Google Scholar 

  • LaBar, K. S., Gatenby, J. C., Gore, J. C., LeDoux, J. E., & Phelps, E. A. (1998). Human amygdala activation during conditioned fear acquisition and extinction: A mixed-trial fMRI study. Neuron, 20(5), 937–945.

    Article  PubMed  Google Scholar 

  • Lebow, M., & Chen, A. (2016). Overshadowed by the amygdala: The bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Molecular Psychiatry, 21, 450–463.

    Article  PubMed  PubMed Central  Google Scholar 

  • LeDoux, J. E. (1992). Brain mechanisms of emotion and emotional learning. Current Opinion in Neurobiology, 2, 191–197.

    Article  PubMed  Google Scholar 

  • LeDoux, J. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155–184.

    Article  PubMed  Google Scholar 

  • LeDoux, J. (2003). The emotional brain, fear, and the amygdala. Cellular and Molecular Neurobiology, 23(4–5), 727–738.

    Article  PubMed  Google Scholar 

  • LeDoux, J. (2007). The amygdala. Current Biology, 17(20), R868–R874.

    Article  PubMed  Google Scholar 

  • LeDoux, J. (2012). Rethinking the emotional brain. Neuron, 73(4), 653–676.

    Article  PubMed  PubMed Central  Google Scholar 

  • LeDoux, J. E. (2014). Coming to terms with fear. Proceedings of the National Academy of Sciences of the United States of America, 111(8), 2871–2878.

    Article  PubMed  PubMed Central  Google Scholar 

  • LeDoux, J. E., Iwata, J., Cicchetti, P., & Reis, D. J. (1988). Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. The Journal of Neuroscience, 8(7), 2517–2529.

    Article  PubMed  PubMed Central  Google Scholar 

  • LeDoux, J. E., & Pine, D. S. (2016). Using neuroscience to help understand fear and anxiety: A two-system framework. The American Journal of Psychiatry, 173(11), 1083–1093.

    Article  PubMed  Google Scholar 

  • Lee, K. H., Tran, A., Turan, Z., & Meister, M. (2020). The sifting of visual information in the superior colliculus. eLife, 9, e50678.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leonard, B. E. (2010). The concept of depression as a dysfunction of the immune system. Current Immunology Reviews, 6, 205–212.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lesch, K. P., & Gutknecht, L. (2004). Focus on the 5-HT1A receptor: Emerging role of a gene regulatory variant in psychopathology and pharmacogenetics. The International Journal of Neuropsychopharmacology, 7, 381–385.

    Article  PubMed  Google Scholar 

  • Lesch, K. P., Bengel, D., Heils, A., et al. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 1527–1531.

    Article  PubMed  Google Scholar 

  • Liberzon, I., Phan, K. L., Decker, L. R., & Taylor, S. F. (2003). Extended amygdala and emotional salience: A PET activation study of positive and negative affect. Neuropsychopharmacology, 28(4), 726–733.

    Article  PubMed  Google Scholar 

  • Loftis, J. M., Huckans, M., & Morasco, B. J. (2010). Neuroimmune mechanisms of cytokine-induced depression: Current theories and novel treatment strategies. Neurobiology of Disease, 37, 519–533.

    Article  PubMed  Google Scholar 

  • López, J. F., Chalmers, D. T., Little, K. Y., & Watson, S. J. (1998). Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: Implications for the neurobiology of depression. Biological Psychiatry, 43(8), 547–573.

    Article  PubMed  Google Scholar 

  • López, J. F., Akil, H., & Watson, S. J. (1999). Neural circuits mediating stress. Biological Psychiatry, 46, 1461–1471.

    Article  PubMed  Google Scholar 

  • Lowry, C. A., Johnson, P. L., Hay-Schmidt, A., Mikkelsen, J., & Shekhar, A. (2005). Modulation of anxiety circuits by serotonergic systems. Stress, 8(4), 233–246.

    Article  PubMed  Google Scholar 

  • Lupien, S. J., & McEwen, B. S. (1997). The acute effects of corticosteroids on cognition: Integration of animal and human model studies. Brain Research Reviews, 24, 1–27.

    Article  PubMed  Google Scholar 

  • Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434–445.

    Article  PubMed  Google Scholar 

  • Mahar, I., Bambico, F. R., Mechawar, N., et al. (2014). Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neuroscience and Biobehavioral Reviews, 38, 173–192.

    Article  PubMed  Google Scholar 

  • Maier, S. F., & Seligman, M. E. (2016). Learned helplessness at fifty: Insights from neuroscience. Psychological Review, 123(4), 349–367.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maier, S. F., & Watkins, L. R. (2005). Stressor controllability and learned helplessness: The roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neuroscience and Biobehavioral Reviews, 29(4–5), 829–841.

    Article  PubMed  Google Scholar 

  • Maier, S. F., Grahn, R. E., Kalman, B. A., Sutton, L. C., Wiertelak, E. P., & Watkins, L. R. (1993). The role of the amygdala and dorsal raphe nucleus in mediating the behavioral consequences of inescapable shock. Behavioral Neuroscience, 107, 377–389.

    Article  PubMed  Google Scholar 

  • Malberg, J. E., Eisch, A. J., Nestler, E. J., & Duman, R. S. (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. Journal of Neuroscience, 20, 9104–9110.

    Article  PubMed  Google Scholar 

  • Marcilhac, A., & Siaud, P. (1997). Identification of projections from the central nucleus of the amygdala to the paraventricular nucleus of the hypothalamus which are immunoreactive for corticotrophin-releasing hormone in the rat. Experimental Physiology, 82(2), 273–281.

    Article  PubMed  Google Scholar 

  • Marek, R., Strobel, C., Bredy, T. W., & Sah, P. (2013). The amygdala and medial prefrontal cortex: Partners in the fear circuit. The Journal of Physiology, 591(10), 2381–2391.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCall, J. G., Al-Hasani, R., Siuda, E. R., Hong, D. Y., Norris, A. J., Ford, C. P., & Bruchas, M. R. (2015). CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron, 87(3), 605–620.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCall, J. G., Siuda, E. R., Bhatti, D. L., et al. (2017). Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. eLife, 6, e18247.

    Article  PubMed  PubMed Central  Google Scholar 

  • McEwen, B. S. (1987). Glucocorticoid-biogenic amine interactions in relation to mood and behavior. Biochemical Pharmacology, 36, 1755–1763.

    Article  PubMed  Google Scholar 

  • McEwen, B. S. (1999). Stress and hippocampal plasticity. Annual Review of Neuroscience, 22, 105–122.

    Article  PubMed  Google Scholar 

  • McEwen, B. S., Weiss, J., & Schwartz, L. (1968). Selective retention of corticosterone by limbic structures in rat brain. Nature, 220, 911–912.

    Article  PubMed  Google Scholar 

  • McEwen, B. S., Eiland, L., Hunter, R. G., & Miller, M. M. (2012). Stress and anxiety: Structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology, 62(1), 3–12.

    Article  PubMed  Google Scholar 

  • McNaughton, N., & Corr, P. J. (2018). Survival circuits and risk assessment. Current Opinion in Behavioral Sciences, 24, 14–20.

    Article  Google Scholar 

  • Melzter, H. (1989). Serotonergic dysfunction in depression. The British Journal of Psychiatry, 155, 25–31.

    Article  Google Scholar 

  • Milad, M. R., & Quirk, G. J. (2012). Fear extinction as a model for translational neuroscience: Ten years of progress. Annual Review of Psychology, 63, 129–151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moga, M. M., Saper, C. B., & Gray, T. S. (1989). Bed nucleus of the stria terminalis: Cytoarchitecture, immunohistochemistry, and projection to the parabrachial nucleus in the rat. The Journal of Comparative Neurology, 283(3), 315–332.

    Article  PubMed  Google Scholar 

  • Morris, L. S., McCall, J. G., Charney, D. S., & Murrough, J. W. (2020). The role of the locus coeruleus in the generation of pathological anxiety. Brain and Neuroscience Advances, 4, 1–18.

    Article  Google Scholar 

  • Motta, S. C., Goto, M., Gouveia, F. V., Baldo, M. V. C., Canteras, N. S., & Swanson, L. W. (2009). Dissecting the brain’s fear system reveals the hypothalamus is critical for responding in subordinate conspecific intruders. Proceedings of the National Academy of Sciences, 106, 4870–4875.

    Article  Google Scholar 

  • Nemeroff, C. B. (1999). The preeminent role of early untoward experience on vulnerability to major psychiatric disorders: The nature-nurture controversy revisited and soon to be resolved. Molecular Psychiatry, 4, 106–108.

    Article  PubMed  Google Scholar 

  • Nemeroff, C. B. (2004). Neurobiological consequences of childhood trauma. The Journal of Clinical Psychiatry, 65, 18–28.

    PubMed  Google Scholar 

  • Nemeroff, C. B. (2020). The state of our understanding of the pathophysiology and optimal treatment of depression: Glass half full or half empty? American Journal of Psychiatry, 177(8), 671–685.

    Article  PubMed  Google Scholar 

  • Nemeroff, C. B., & Binder, E. (2014). The preeminent role of childhood abuse and neglect in vulnerability to major psychiatric disorders: Toward elucidating the underlying neurobiological mechanisms. Journal of the American Academy of Child and Adolescent Psychiatry, 53, 395–397.

    Article  PubMed  Google Scholar 

  • Nemeroff, C. B., & Seligman, F. (2013). The pervasive and persistent neurobiological and clinical aftermath of child abuse and neglect. The Journal of Clinical Psychiatry, 74, 999–1001.

    Article  PubMed  Google Scholar 

  • Nemeroff, C. B., Widerlov, E., Bisette, G., et al. (1984). Elevated concentrations of CSF corticotropin-releasing-factor-like immunoreactivity in depressed patients. Science, 226, 1342–1344.

    Article  PubMed  Google Scholar 

  • Nestler, E. J., & Carlezon, W. A., Jr. (2006). The mesolimbic dopamine reward circuit in depression. Biological Psychiatry, 59(12), 1151–1159.

    Article  PubMed  Google Scholar 

  • Ochsner, K. N., Ray, R. D., Cooper, J. C., Robertson, E. R., Chopra, S., Gabrieli, J. D., & Gross, J. J. (2004). For better or for worse: Neural systems supporting the cognitive down- and up-regulation of negative emotion. NeuroImage, 23(2), 483–499.

    Article  PubMed  Google Scholar 

  • Ota, K. T., & Duman, R. S. (2013). Environmental and pharmacological modulations of cellular plasticity: Role in the pathophysiology and treatment of depression. Neurobiology of Disease, 57, 28–37.

    Article  PubMed  Google Scholar 

  • Owens, M. J., & Nemeroff, C. B. (1994). The role of serotonin in the pathophysiology of depression: Focus on the serotonin transporter. Clinical Chemistry, 40, 288–295.

    Article  PubMed  Google Scholar 

  • Pape, H. C., & Pare, D. (2010). Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiological Reviews, 90(2), 419–463.

    Article  PubMed  Google Scholar 

  • Pare, D., Quirk, G. J., & Ledoux, J. E. (2004). New vistas on amygdala networks in conditioned fear. Journal of Neurophysiology, 92(1), 1–9.

    Article  PubMed  Google Scholar 

  • Paton, J. J., Belova, M. A., Morrison, S. E., & Salzman, C. D. (2006). The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature, 439(7078), 865–870.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul, E. D., & Chen, A. (2017). Neural circuitry of sress, fear, and anxiety: Focus on extended amygdala corticotropin releasing factor systems. In G. Fink (Ed.), Stress: Neuroendocrinology and neurobiology (pp. 83–96). Academic Press.

    Chapter  Google Scholar 

  • Pavlov, I. P. (1927). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Oxford University Press.

    Google Scholar 

  • Peng, H., Long, Y., Li, J., et al. (2014). Hypothalamic-pituitary-adrenal axis functioning and dysfunctional attitude in depressed patients with and without childhood neglect. BMC Psychiatry, 14, 45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peyron, C., Petit, J. M., Rampon, C., Jouvet, M., & Luppi, P. H. (1997). Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience, 82(2), 443–468.

    Article  Google Scholar 

  • Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48(2), 175–187.

    Article  PubMed  Google Scholar 

  • Radley, J. J., & Sawchenko, P. E. (2011). A common substrate for prefrontal and hippocampal inhibition of the neuroendocrine stress response. Journal of Neuroscience, 31, 9683–9695.

    Article  PubMed  Google Scholar 

  • Ramirez, F., Moscarello, J. M., LeDoux, J. E., & Sears, R. M. (2015). Active avoidance requires a serial basal amygdala to nucleus accumbens shell circuit. The Journal of Neuroscience, 35(8), 3470–3477.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ressler, K. J. (2010). Amygdala activity, fear, and anxiety: Modulation by stress. Biological Psychiatry, 67(12), 1117–1119.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ressler, K. J., & Nemeroff, C. B. (1999). Role of norepinephrine in the pathophysiology and treatment of mood disorders. Biological Psychiatry, 46(9), 1219–1233.

    Article  PubMed  Google Scholar 

  • Roland, B. L., & Sawchenko, P. E. (1993). Local origins of some GABAergic projections to the paraventricular and supraoptic nuclei of the hypothalamus of the rat. The Journal of Comparative Neurology, 332, 123–143.

    Article  PubMed  Google Scholar 

  • Sabatinelli, D., Bradley, M. M., Lang, P. J., Costa, V. D., & Versace, F. (2007). Pleasure rather than salience activates human nucleus accumbens and medial prefrontal cortex. Journal of Neurophysiology, 98, 1374–1379.

    Article  PubMed  Google Scholar 

  • Saper, C. B., & Lowell, B. B. (2014). The hypothalamus. Current Biology, 24(23), R1111–R1116.

    Article  PubMed  Google Scholar 

  • Sapolsky, R. M. (1996). Why stress is bad for your brain. Science, 273, 749–750.

    Article  PubMed  Google Scholar 

  • Sapolsky, R. M., Krey, L. C., & McEwen, B. S. (1984). Stress down-regulates corticosterone receptors in a site-specific manner in the brain. Endocrinology, 114, 287–292.

    Article  PubMed  Google Scholar 

  • Sara, S. J., & Bouret, S. (2012). Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron, 76(1), 130–141.

    Article  PubMed  Google Scholar 

  • Schaaf, M. J. M., de Jong, J., de Kloet, E. R., & Vreugdenhil, E. (1998). Downregulation of BDNF mRNA and protein in the rat hippocampus by corticosterone. Brain Research, 813, 112–120.

    Article  PubMed  Google Scholar 

  • Seligman, M. E. P. (1974). Depression and learned helplessness. In R. J. Friedman & M. M. Katz (Eds.), The psychology of depression: Contemporary theory and research (pp. 83–113). Winston.

    Google Scholar 

  • Shabel, S. J., & Janak, P. H. (2009). Substantial similarity in amygdala neuronal activity during conditioned appetitive and aversive emotional arousal. Proceedings of the National Academy of Sciences of the United States of America, 106(35), 15031–15036.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi, L., Sun, J., Wei, D., & Qiu, J. (2019). Recover from the adversity: Functional connectivity basis of psychological resilience. Neuropsychologia, 122, 20–27.

    Article  PubMed  Google Scholar 

  • Silva, B. A., Gross, C. T., & Gräff, J. (2016). The neural circuits of innate fear: Detection, integration, action, and memorization. Learning & Memory, 23(10), 544–555.

    Article  Google Scholar 

  • Šimić, G., Tkalčić, M., Vukić, V., Mulc, D., Španić, E., Šagud, M., Olucha-Bordonau, F. E., Vukšić, M., & Hof, P. R. (2021). Understanding emotions: Origins and roles of the amygdala. Biomolecules, 11, 823.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sokolowski, K., & Corbin, J. G. (2012). Wired for behaviors: From development to function of innate limbic system circuitry. Frontiers in Molecular Neuroscience, 5, 55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sotres-Bayon, F., Bush, D. E., & LeDoux, J. E. (2004). Emotional perseveration: An update on prefrontalamygdala interactions in fear extinction. Learning & Memory, 11(5), 525–535.

    Google Scholar 

  • Stankiewicz, A. M., Swiergiel, A. H., & Lisowski, P. (2013). Epigenetics of stress adaptations in the brain. Brain Research Bulletin, 98, 76–92.

    Article  PubMed  Google Scholar 

  • Steimer, T. (2002). The biology of fear- and anxiety-related behaviors. Dialogues in Clinical Neuroscience, 4(3), 231–249.

    Google Scholar 

  • Suri, D., & Vaidya, V. A. (2013). Glucocorticoid regulation of brain-derived neurotrophic factor: Relevance to hippocampal structural and functional plasticity. Neuroscience, 239, 196–213.

    Article  PubMed  Google Scholar 

  • Suridjan, I., Boileau, I., Bagby, M., Rusjan, P. M., Wilson, A. A., Houle, S., & Mizrahi, R. (2012). Dopamine response to psychosocial stress in humans and its relationship to individual differences in personality traits. Journal of Psychiatric Research, 46(7), 890–897.

    Article  PubMed  Google Scholar 

  • Swanson, L. W., & Kuypers, H. G. (1980). The paraventricular nucleus of the hypothalamus: Cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double labeling methods. The Journal of Comparative Neurology, 194, 555–570.

    Article  PubMed  Google Scholar 

  • Swanson, L. W., & Petrovich, G. D. (1998). What is the amygdala? Trends in Neurosciences, 21(8), 323–331.

    Article  PubMed  Google Scholar 

  • Tafet, G. E., & Bernardini, R. (2003). Psychoneuroendocrinological links between chronic stress and depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 27, 893–903.

    Article  Google Scholar 

  • Tafet, G. E., & Nemeroff, C. B. (2016). The links between stress and depression: Psychoneuroendocrinological, genetic, and environmental interactions. The Journal of Neuropsychiatry and Clinical Neurosciences, 28(2), 77–88.

    Article  PubMed  Google Scholar 

  • Tafet, G. E., Toister-Achituv, M., & Shinitzky, M. (2001). Enhancement of serotonin uptake by cortisol: A possible link between stress and depression. Cognitive, Affective, & Behavioral Neuroscience, 1, 96–104.

    Article  Google Scholar 

  • Ulrich-Lai, Y. M., & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 10(6), 397–409.

    Article  PubMed  PubMed Central  Google Scholar 

  • Valentino, R. J., Page, M. E., Van Bockstaele, E., & Aston-Jones, G. (1992). Corticotropin-releasing factor innervation of the locus coeruleus region: Distribution of fibers and sources of input. Neuroscience, 48, 689–705.

    Article  PubMed  Google Scholar 

  • Valentino, R. J., Lucki, I., & Van Bockstaele, E. (2010). Corticotropin-releasing factor in the dorsal raphe nucleus: Linking stress coping and addiction. Brain Research, 1314, 29–37.

    Article  PubMed  Google Scholar 

  • van Marle, H. J., Hermans, E. J., Qin, S., & Fernández, G. (2010). Enhanced resting-state connectivity of amygdala in the immediate aftermath of acute psychological stress. Neuroimage, 53(1), 348–354.

    Article  PubMed  Google Scholar 

  • van Riel, E., van Gemert, N. G., Meijer, O. C., et al. (2004). Effect of early life stress on serotonin responses in the hippocampus of young adult rats. Synapse, 53, 11–19.

    Article  PubMed  Google Scholar 

  • Vermeer, H., Hendriks-Stegeman, B. I., van der Burg, B., et al. (2003). Glucocorticoid-induced increase in lymphocytic FKBP51 messenger ribonucleic acid expression: A potential marker for glucocorticoid sensitivity, potency, and bioavailability. The Journal of Clinical Endocrinology and Metabolism, 88, 277–284.

    Article  PubMed  Google Scholar 

  • Vogt, B. A. (2018). Anxiety and fear from the perspective of cingulate cortex. Journal of Depression and Anxiety Forecast, 1, 1–7.

    Google Scholar 

  • Vogt, B., Rosene, D., & Pandya, D. (1979). Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey. Science, 204, 205–207.

    Article  PubMed  Google Scholar 

  • Vogt, B. A., Finch, D. M., & Olson, C. R. (1992). Functional heterogeneity in cingulate cortex: The anterior executive and posterior evaluative regions. Cerebral Cortex, 2, 435–443.

    PubMed  Google Scholar 

  • Vogt, B., Nimchimsky, E., Vogt, L., & Hof, P. (1995). Human cingulate cortex: Surface features, flat maps, and cytoarchitecture. Journal of Comparative Neurology, 359, 490–506.

    Article  PubMed  Google Scholar 

  • Vyas, A., Mitra, R., Shankaranarayana Rao, B. S., & Chattarji, S. (2002). Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. The Journal of Neuroscience, 22(15), 6810–6818.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei, P., Liu, N., Zhang, Z., Liu, X., Tang, Y., He, X., Wu, B., Zhou, Z., Liu, Y., Li, J., Zhang, Y., Zhou, X., Xu, L., Chen, L., Bi, G., Hu, X., Xu, F., & Wang, L. (2015). Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nature Communications, 6, 6756.

    Article  PubMed  Google Scholar 

  • Young, E. A., Haskett, R. F., Murphy-Weinberg, V., Watson, S. J., & Akil, H. (1991). Loss of glucocorticoid fast feedback in depression. Archives of General Psychiatry, 48, 693–699.

    Article  PubMed  Google Scholar 

  • Zald, D. H. (2003). The human amygdala and the emotional evaluation of sensory stimuli. Brain Research Reviews, 41(1), 88–123.

    Article  PubMed  Google Scholar 

  • Zhang, J., Fan, Y., Li, Y., Zhu, H., Wang, L., & Zhu, M. Y. (2012). Chronic social defeat up-regulates expression of the serotonin transporter in rat dorsal raphe nucleus and projection regions in a glucocorticoid-dependent manner. Journal of Neurochemistry, 123(6), 1054–1068.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tafet, G.E. (2022). Clinical Approach to Stress. In: Neuroscience of Stress. Springer, Cham. https://doi.org/10.1007/978-3-031-00864-1_4

Download citation

Publish with us

Policies and ethics