Skip to main content

Neurobiological Approach to Stress

  • Chapter
  • First Online:
Neuroscience of Stress
  • 1324 Accesses

Abstract

Stress may be provoked by environmental stressors, which are perceived and transmitted through sensory pathways to different neural structures in the brain, while internal stressors may be perceived as symptoms provoked by external stimuli or evoked memories. Sensory information is processed through the thalamus and different cortical areas to reach limbic structures, such as the hippocampus and the amygdala, which in turn activates responses mediated by the autonomic nervous system (ANS) and the hypothalamic-pituitary-adrenal (HPA) axis. Cognitive and emotional processing involves certain areas of the prefrontal cortex (PFC), which in turn are interconnected with the hippocampus and the amygdala, therefore contributing to improve adaptive responses to stress. Different neurotransmitter systems are also involved in cognitive and emotional processing, therefore contributing to shape stress responses. Serotonin is mainly produced in the dorsal raphe nuclei (DRN), which participate in fear and anxiety in response to stressful situations, and the medial raphe nuclei (MRN), which participate in conferring tolerance to unpleasant, unavoidable and persistent aversive stimuli, such as those associated with chronic stressful situations. Dopamine is mainly produced in the substantia nigra (SN) and the ventral tegmental area (VTA), which project to different structures, such as the nucleus accumbens (NAc), which in turn have been associated with salience and valence, therefore participating in reward detection and anticipation. Norepinephrine is mainly produced in the locus coeruleus (LC), which projects to cortical and limbic structures, which participates in enhanced arousal and vigilance, which contribute to improve adaptive responses to stress. These monoaminergic systems are interconnected, therefore contributing to their reciprocal regulation, as well as different cortical and subcortical structures involved in the regulation of the ANS and the HPA axis. In response to stressful events, the HPA axis is activated by excitatory projections, targeting the paraventricular nucleus (PVN) of the hypothalamus, to produce and release CRF, which stimulates the synthesis of ACTH, which in turn stimulates the biosynthesis and release of glucocorticoids. Chronic stress may lead to persistent activation of the HPA system with the consequent increase in cortisol levels, which in turn participates in the interface between chronic stress and the origin and development of depression. Therefore, successful adaptive responses to stress may lead to the development of resilience and the acquisition of resources aimed at improving health conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular biology of the cell (4th ed.). Garland Science. The Structure and Function of DNA.

    Google Scholar 

  • Alenina, N., & Klempin, F. (2015). The role of serotonin in adult hippocampal neurogenesis. Behavioural Brain Research, 277, 49–57.

    Article  PubMed  Google Scholar 

  • Alheid, G. F., & Heimer, L. (1988). New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: The striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience, 27, 1–39.

    Article  PubMed  Google Scholar 

  • Amaral, D. G., & Price, J. L. (1984). Amygdalo-cortical projections in the monkey (Macaca fascicularis). The Journal of Comparative Neurology, 230, 465–496.

    Article  PubMed  Google Scholar 

  • Arborelius, L., Owens, M. J., Plotsky, P. M., et al. (1999). The role of corticotropin-releasing factor in depression and anxiety disorders. The Journal of Endocrinology, 160, 1–12.

    Article  PubMed  Google Scholar 

  • Baddeley, A. (1998). Recent developments in working memory. Current Opinion in Neurobiology, 8(2), 234–238.

    Article  PubMed  Google Scholar 

  • Baddeley, A., & Petrides, M. (1996). Specialized systems for the processing of mnemonic information within the primate frontal cortex – Discussion. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 351(1346), 1461–1462.

    Google Scholar 

  • Bale, T. L., & Vale, W. W. (2004). CRF and CRF receptors: Role in stress responsivity and other behaviors. Annual Review of Pharmacology and Toxicology, 44, 525–557.

    Google Scholar 

  • Barbas, H. (2000). Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Research Bulletin, 52, 319–330.

    Article  PubMed  Google Scholar 

  • Barbas, H. (2007). Specialized elements of orbitofrontal cortex in primates. Annals of the New York Academy of Sciences, 1121, 10–32.

    Article  PubMed  Google Scholar 

  • Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions to human working memory. Cortex, 49(5), 1195–1205.

    Article  PubMed  Google Scholar 

  • Baumeister, D., Lightman, S. L., & Pariante, C. M. (2014). The interface of stress and the HPA axis in behavioural phenotypes of mental illness. Current Topics in Behavioral Neurosciences, 18, 13–24.

    Article  PubMed  Google Scholar 

  • Beato, M. (1989). Gene regulation by steroid hormones. Cell, 56, 335–344.

    Article  PubMed  Google Scholar 

  • Binder, E. B. (2009). The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology, 34(Suppl 1), S186–S195.

    Article  PubMed  Google Scholar 

  • Bogdan, R., Nikolova, Y. S., & Pizzagalli, D. A. (2013). Neurogenetics of depression: A focus on reward processing and stress sensitivity. Neurobiology of Disease, 52, 12–23.

    Article  PubMed  Google Scholar 

  • Boutillier, A. L., Gaiddon, C., Lorang, D., Roberts, J. L., & Loeffler, J. P. (1998). Transcriptional activation of the proopiomelanocortin gene by cyclic AMP-responsive element binding protein. Pituitary, 1(1), 33–43.

    Article  PubMed  Google Scholar 

  • Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215–222.

    Article  PubMed  Google Scholar 

  • Cabib, S., & Puglisi-Allegra, S. (2012). The mesoaccumbens dopamine in coping with stress. Neuroscience and Biobehavioral Reviews, 36, 79–89.

    Article  PubMed  Google Scholar 

  • Carlsted-Duke, J., Strömstedt, P. E., Wrange, Ö., Bergman, T., Gustafsson, J. A., & Jörnvall, H. (1987). Domain structure of the glucocorticoid receptor protein. Proceedings of the National Academy of Sciences of the United States of America, 84, 4437–4440.

    Article  Google Scholar 

  • Carmichael, S. T., & Price, J. L. (1995). Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. The Journal of Comparative Neurology, 363, 615–641.

    Article  PubMed  Google Scholar 

  • Carmichael, S. T., & Price, J. L. (1996). Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. The Journal of Comparative Neurology, 371, 179–207.

    Article  PubMed  Google Scholar 

  • Cenquizca, L. A., & Swanson, L. W. (2007). Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex. Brain Research Reviews, 56(1), 1–26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi, D. C., Furay, A. R., Evanson, N. K., Ostrander, M. M., Ulrich-Lai, Y. M., & Herman, J. P. (2007). Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic-pituitary-adrenal axis activity: Implications for the integration of limbic inputs. The Journal of Neuroscience, 27(8), 2025–2034.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. Journal of the American Medical Association, 267(9), 1244–1252.

    Article  PubMed  Google Scholar 

  • Chrousos, G. P., & Gold, P. W. (1998). A healthy body in a healthy mind- and vice versa—The damaging power of uncontrollable stress. Journal of Clinical Endocrinology and Metabolism, 83, 1842–1845.

    PubMed  Google Scholar 

  • Cullinan, W. E., Herman, J. P., & Watson, S. J. (1993). Ventral subicular interaction with the hypothalamic paraventricular nucleus: Evidence for a relay in the bed nucleus of the stria terminalis. The Journal of Comparative Neurology, 332, 1–20.

    Article  PubMed  Google Scholar 

  • Cunningham, E. T., Jr., & Sawchenko, P. E. (1988). Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. The Journal of Comparative Neurology, 274, 60–76.

    Article  PubMed  Google Scholar 

  • Dallman, M. F., Makara, G. B., Roberts, J. L., Levin, N., & Blum, M. (1985). Corticotropin response to removal of releasing factors and corticosteroids in vivo. Endocrinology, 117, 2190–2197.

    Article  PubMed  Google Scholar 

  • Davis, M. (1992). The role of the amygdala in fear and anxiety. Annual Review of Neuroscience, 15, 353–375.

    Article  PubMed  Google Scholar 

  • Deakin, J. F. W., & Graeff, F. G. (1991). 5 HT and mechanisms of defense. Journal of Psychopharmacology, 5, 305–315.

    Article  PubMed  Google Scholar 

  • Der-Avakian, A., & Markou, A. (2012). The neurobiology of anhedonia and other reward-related deficits. Trends in Neurosciences, 35, 68–77.

    Article  PubMed  Google Scholar 

  • Dixon, M. L., Thiruchselvam, R., Todd, R., & Christoff, K. (2017). Emotion and the prefrontal cortex: An integrative review. Psychological Bulletin, 143(10), 1033–1081.

    Article  PubMed  Google Scholar 

  • Dong, H. W., & Swanson, L. W. (2006). Projections from bed nuclei of the stria terminalis, anteromedial area: Cerebral hemisphere integration of neuroendocrine, autonomic, and behavioral aspects of energy balance. The Journal of Comparative Neurology, 494, 142–178.

    Article  PubMed  PubMed Central  Google Scholar 

  • Drevets, W. C., Savitz, J., & Trimble, M. (2008). The subgenual anterior cingulate cortex in mood disorders. CNS Spectrums, 13, 663–681.

    Article  PubMed  PubMed Central  Google Scholar 

  • Drouin, J., Sun, Y., Chamberland, M., Gauthier, Y., De Lean, A., Nemer, M., & Schmidt, T. (1993). Novel glucocorticoid receptor complex with DNA element of the hormone-repressed POMC gene. EMBO Journal, 12(1), 145–156.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duman, R. S. (2004). Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Medicine, 5, 11–25.

    Article  PubMed  Google Scholar 

  • Duman, R. S., & Monteggia, L. M. (2006). A neurotrophic model for stress-related mood disorders. Biological Psychiatry, 59(12), 1116–1127.

    Article  PubMed  Google Scholar 

  • Dunlop, B. W., & Nemeroff, C. B. (2007). The role of dopamine in the pathophysiology of depression. Archives of General Psychiatry, 64, 327–337.

    Article  PubMed  Google Scholar 

  • Eichenbaum, H., & Lipton, P. A. (2008). Towards a functional organization of the medial temporal lobe memory system: Role of the parahippocampal and medial entorhinal cortical areas. Hippocampus, 18(12), 1314–1324.

    Article  PubMed  PubMed Central  Google Scholar 

  • Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15, 85–93.

    Article  PubMed  Google Scholar 

  • Evans, R. M. (1988). The steroid and thyroid hormone receptor superfamily. Science, 240(4854), 889–895.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fanselow, M. S., & Dong, H. W. (2010). Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 65(1), 7–19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferguson, A. V., Latchford, K. J., & Samson, W. K. (2008). The paraventricular nucleus of the hypothalamus - a potential target for integrative treatment of autonomic dysfunction. Expert Opinion on Therapeutic Targets, 12(6), 717–727.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferry, B., & McGaugh, J. L. (2000). Role of amygdala norepinephrine in mediating stress hormone regulation of memory storage. Acta Pharmacologica Sinica, 21(6), 481–493.

    PubMed  Google Scholar 

  • Franklin, T. B., Saab, B. J., & Mansuy, I. M. (2012). Neural mechanisms of stress resilience and vulnerability. Neuron, 75(5), 747–761.

    Article  PubMed  Google Scholar 

  • Garcia-Garcia, A. L., Newman-Tancredi, A., & Leonardo, E. D. (2014). 5-HT(1A) receptors in mood and anxiety: Recent insights into autoreceptor versus heteroreceptor function. Psychopharmacology, 231(4), 623–636.

    Article  PubMed  Google Scholar 

  • Ghashghaei, H. T., Hilgetag, C. C., & Barbas, H. (2007). Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage, 34(3), 905–923.

    Article  PubMed  Google Scholar 

  • Goel, V., & Dolan, R. J. (2001). The functional anatomy of humor: Segregating cognitive and affective components. Nature Neuroscience, 4(3), 237–238.

    Article  PubMed  Google Scholar 

  • Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14(3), 477–485.

    Article  PubMed  Google Scholar 

  • Grabenhorst, F., & Rolls, E. T. (2011). Value, pleasure and choice in the ventral prefrontal cortex. Trends in Cognitive Sciences, 15(2), 56–67.

    Article  PubMed  Google Scholar 

  • Gray, T. S., Carney, M. E., & Magnuson, D. J. (1989). Direct projections from the central amygdaloid nucleus to the hypothalamic paraventricular nucleus: Possible role in stress-induced adrenocorticotropin release. Neuroendocrinology, 50, 433–446.

    Article  PubMed  Google Scholar 

  • Gray, N. A., Milak, M. S., DeLorenzo, C., et al. (2013). Antidepressant treatment reduces serotonin-1A autoreceptor binding in major depressive disorder. Biological Psychiatry, 74, 26–31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamon, M., & Blier, P. (2013). Monoamine neurocircuitry in depression and strategies for new treatments. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 45, 54–63.

    Article  PubMed  Google Scholar 

  • Heim, C., & Nemeroff, C. B. (2001). The role of childhood trauma in the neurobiology of mood and anxiety disorders: Preclinical and clinical studies. Biological Psychiatry, 49, 1023–1039.

    Article  PubMed  Google Scholar 

  • Hensler, J. G. (2006). Serotonergic modulation of the limbic system. Neuroscience and Biobehavioral Reviews, 30, 203–214.

    Article  PubMed  Google Scholar 

  • Herman, J. P., Figueiredo, H., Mueller, N. K., Ulrich-Lai, Y., Ostrander, M. M., Choi, D. C., & Cullinan, W. E. (2003). Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo-pituitaryadrenocortical responsiveness. Frontiers in Neuroendocrinology, 24, 151–180.

    Article  PubMed  Google Scholar 

  • Herman, J. P., McKlveen, J. M., Ghosal, S., Kopp, B., Wulsin, A., Makinson, R., Scheimann, J., & Myers, B. (2016). Regulation of the hypothalamic-pituitary-adrenocortical stress response. Comprehensive Physiology, 6(2), 603–621.

    Article  PubMed  PubMed Central  Google Scholar 

  • Herman, J. P., Schaffer, M. K.-H., Young, E. A., Thompson, R., Douglass, J., Akil, H., & Watson, S. J. (1989). Evidence of hippocampal regulation of neuroendocrine neurons of the hippothalamo –pituitary–adrenocortical axis. The Journal of Neuroscience, 9, 3072–3082.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiser, J., & Koenigs, M. (2018). The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biological Psychiatry, 83(8), 638–647.

    Article  PubMed  Google Scholar 

  • Holsboer, F. (2000). The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology, 23, 477–501.

    Article  PubMed  Google Scholar 

  • Hoover, W. B., & Vertes, R. P. (2007). Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Structure and Function, 212(2), 149–179.

    Article  PubMed  Google Scholar 

  • Jacobs, B. L., van Praag, H., & Gage, F. H. (2000). Adult brain neurogenesis and psychiatry: A novel theory of depression. Molecular Psychiatry, 5, 262–269.

    Article  PubMed  Google Scholar 

  • Keller-Wood, M. E., & Dallmam, M. F. (1984). Corticosteroid inhibition of ACTH secretion. Endocrine Reviews, 5, 1–24.

    Article  PubMed  Google Scholar 

  • Kirby, L. G., Rice, K. C., & Valentino, R. J. (2000). Effects of corticotropin-releasing factor on neuronal activity in the serotonergic dorsal raphe nucleus. Neuropsychopharmacology, 22, 148–162.

    Article  PubMed  Google Scholar 

  • Knierim, J. J. (2015). The hippocampus. Current Biology, 25(23), R1116–R1121.

    Article  PubMed  Google Scholar 

  • Koenigs, M., & Grafman, J. (2009). The functional neuroanatomy of depression: Distinct roles for ventromedial and dorsolateral prefrontal cortex. Behavioural Brain Research, 201(2), 239–243.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kranz, G. S., Kasper, S., & Lanzenberger, R. (2010). Reward and the serotonergic system. Neuroscience, 166, 1023–1035.

    Article  PubMed  Google Scholar 

  • Krishnan, V., & Nestler, E. J. (2010). Linking molecules to mood: New insight into the biology of depression. The American Journal of Psychiatry, 167, 1305–1320.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krugers, H. J., Lucassen, P. J., Karst, H., & Joëls, M. (2010). Chronic stress effects on hippocampal structure and synaptic function: Relevance for depression and normalization by anti-glucocorticoid treatment. Frontiers in Synaptic Neuroscience, 2, 24.

    PubMed  PubMed Central  Google Scholar 

  • LeDoux, J. E., Iwata, J., Cicchetti, P., & Reis, D. J. (1988). Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. The Journal of Neuroscience, 8(7), 2517–2529.

    Article  PubMed  PubMed Central  Google Scholar 

  • LeDoux, J. E. (1992). Brain mechanisms of emotion and emotional learning. Current Opinion in Neurobiology, 2, 191–197.

    Article  PubMed  Google Scholar 

  • LeDoux, J. (1998). The emotional brain: The mysterious underpinnings of emotional life. Simon & Schuster.

    Google Scholar 

  • LeDoux, J. (2007). The amygdala. Current Biology, 17(20), R868–R874.

    Article  PubMed  Google Scholar 

  • Lesch, K. P., & Gutknecht, L. (2004). Focus on the 5-HT1A receptor: Emerging role of a gene regulatory variant in psychopathology and pharmacogenetics. The International Journal of Neuropsychopharmacology, 7, 381–385.

    Article  PubMed  Google Scholar 

  • Lesch, K. P., Bengel, D., Heils, A., et al. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 1527–1531.

    Article  PubMed  Google Scholar 

  • López, J. F., Chalmers, D. T., Little, K. Y., et al. (1998). Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: Implications for the neurobiology of depression. Biological Psychiatry, 43, 547–573.

    Article  PubMed  Google Scholar 

  • López, J. F., Akil, H., & Watson, S. J. (1999). Neural circuits mediating stress. Biological Psychiatry, 46, 1461–1471.

    Article  PubMed  Google Scholar 

  • Mackey, S., & Petrides, M. (2010). Quantitative demonstration of comparable architectonic areas within the ventromedial and lateral orbital frontal cortex in the human and the macaque monkey brains. European Journal of Neuroscience, 32, 1940–1950.

    Article  PubMed  Google Scholar 

  • Mahar, I., Bambico, F. R., Mechawar, N., et al. (2014). Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neuroscience and Biobehavioral Reviews, 38, 173–192.

    Article  PubMed  Google Scholar 

  • Malberg, J. E., Eisch, A. J., Nestler, E. J., & Duman, R. S. (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. Journal of Neuroscience, 20, 9104–9110.

    Article  PubMed  Google Scholar 

  • Malkoski, S., & Dorin, R. (1999). Composite glucocorticoid regulation at a functionally defined negative glucocorticoid response element of the human corticotropin-releasing hormone gene. Molecular Endocrinology, 19, 1629–1644.

    Article  Google Scholar 

  • Maren, S., & Fanselow, M. S. (1995). Synaptic plasticity in the basolateral amygdala induced by hippocampal formation stimulation in vivo. The Journal of Neuroscience, 15, 7548–7564.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marin, P., Bécamel, C., Chaumont-Dubel, S., Vandermoere, F., Bockaert, J., & Claeysen, S. (2020). Classification and signaling characteristics of 5-HT receptors: Toward the concept of 5-HT receptosomes. In C. P. Müller & K. A. Cunningham (Eds.), Handbook of behavioral neuroscience (Vol. 31, pp. 91–120). Elsevier.

    Google Scholar 

  • Mayberg, H. S., Liotti, M., Brannan, S. K., McGinnis, S., Mahurin, R. K., Jerabek, P. A., Silva, J. A., Tekell, J. L., Martin, C. C., Lancaster, J. L., & Fox, P. T. (1999). Reciprocal limbiccortical function and negative mood: Converging PET findings in depression and normal sadness. The American Journal of Psychiatry, 156(5), 675–682.

    Article  PubMed  Google Scholar 

  • McCall, J. G., Al-Hasani, R., Siuda, E. R., Hong, D. Y., Norris, A. J., Ford, C. P., & Bruchas, M. R. (2015). CRH engagement of the locus Coeruleus noradrenergic system mediates stress-induced anxiety. Neuron, 87(3), 605–620.

    Article  PubMed  PubMed Central  Google Scholar 

  • McEwen, B. S., & Brinton, R. E. (1987). Neuroendocrine aspects of adaptation. Progress in Brain Research, 72, 11–26.

    Article  PubMed  Google Scholar 

  • Mitchelmore, C., & Gede, L. (2014). Brain derived neurotrophic factor: Epigenetic regulation in psychiatric disorders. Brain Research, 1586, 162–172.

    Article  PubMed  Google Scholar 

  • Mongeau, R., Blier, P., & de Montigny, C. (1997). The serotonergic and noradrenergic systems of the hippocampus: Their interactions and the effects of antidepressant treatments. Brain Research Reviews, 23, 145–195.

    Article  PubMed  Google Scholar 

  • Motzkin, J. C., Philippi, C. L., Wolf, R. C., et al. (2015). Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biological Psychiatry, 77, 276–284.

    Article  PubMed  Google Scholar 

  • Myers-Schulz, B., & Koenigs, M. (2012). Functional anatomy of ventromedial prefrontal cortex: Implications for mood and anxiety disorders. Molecular Psychiatry, 17(2), 132–141.

    Article  PubMed  Google Scholar 

  • Namboodiri, V. M. K., Otis, J. M., van Heeswijk, K., Voets, E. S., Alghorazi, R. A., Rodriguez-Romaguera, J., et al. (2019). Single-cell activity tracking reveals that orbitofrontal neurons acquire and maintain a long-term memory to guide behavioral adaptation. Nature Neuroscience, 22, 1110–1121.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nemeroff, C. B. (1998). Psychopharmacology of affective disorders in the 21st century. Biological Psychiatry, 44, 517–525.

    PubMed  Google Scholar 

  • Nemeroff, C. B. (2004). Neurobiological consequences of childhood trauma. The Journal of Clinical Psychiatry, 65, 18–28.

    PubMed  Google Scholar 

  • Nestler, E. J., & Carlezon, W. A., Jr. (2006). The mesolimbic dopamine reward circuit in depression. Biological Psychiatry, 59, 1151–1159.

    Article  PubMed  Google Scholar 

  • Ochsner, K. N., et al. (2002). Rethinking feelings: An FMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience, 14(8), 1215–1229.

    Article  PubMed  Google Scholar 

  • Ochsner, K. N., et al. (2004). For better or for worse: Neural systems supporting the cognitive down- and upregulation of negative emotion. NeuroImage, 23(2), 483–499.

    Article  PubMed  Google Scholar 

  • Ongür, D., Ferry, A. T., & Price, J. L. (2003). Architectonic subdivision of the human orbital and medial prefrontal cortex. The Journal of Comparative Neurology, 460, 425–449.

    Article  PubMed  Google Scholar 

  • Ota, K. T., & Duman, R. S. (2013). Environmental and pharmacological modulations of cellular plasticity: Role in the pathophysiology and treatment of depression. Neurobiology of Disease, 57, 28–37.

    Article  PubMed  Google Scholar 

  • Paré, D., Quirk, G. J., & Ledoux, J. E. (2004). New vistas on amygdala networks in conditioned fear. Journal of Neurophysiology, 92(1), 1–9.

    Article  PubMed  Google Scholar 

  • Pare, D., & Duvarci, S. (2012). Amygdala microcircuits mediating fear expression and extinction. Current Opinion in Neurobiology, 22(4), 717–723.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul, E. D., & Chen, A. (2017). Neural circuitry of stress, fear, and anxiety: Focus on extended amygdala Corticotropin-releasing factor systems. In G. Fink (Ed.), Stress: Neuroendocrinology and neurobiology (Vol. 2, pp. 84–96, Ch 8). Academic Press

    Google Scholar 

  • Pfahl, M. (1993). Nuclear receptor/AP-1 interaction. Endocrine Reviews, 14, 651–658.

    PubMed  Google Scholar 

  • Phillips, M. L., Ladouceur, C. D., & Drevets, W. C. (2008). A neural model of voluntary and automatic emotion regulation: Implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13(9), 829–857.

    Google Scholar 

  • Pitkänen, A., Pikkarainen, M., Nurminen, N., & Ylinen, A. (2000). Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Annals of the New York Academy of Sciences, 911, 369–391.

    Article  PubMed  Google Scholar 

  • Price, J. L. (2006). Connections of orbital cortex. In D. H. Zald & S. L. Rauch (Eds.), The orbitofrontal cortex (pp. 39–55). Oxford University Press.

    Chapter  Google Scholar 

  • Price, J. L. (2007). Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions. Annals of the New York Academy of Sciences, 1121, 54–71.

    Article  PubMed  Google Scholar 

  • Price, J. L., & Drevets, W. C. (2010). Neurocircuitry of mood disorders. Neuropsychopharmacology, 35, 192–216.

    Article  PubMed  Google Scholar 

  • Price, J. L., & Drevets, W. C. (2012). Neural circuits underlying the pathophysiology of mood disorders. Trends in Cognitive Sciences, 16, 61–71.

    Article  PubMed  Google Scholar 

  • Pruessner, J. C., Champagne, F., Meaney, M. J., & Dagher, A. (2004). Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: A positron emission tomography study using [11C]raclopride. The Journal of Neuroscience, 24(11), 2825–2831.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ray, R. D., & Zald, D. H. (2012). Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex. Neuroscience and Biobehavioral Reviews, 36, 479–501.

    Article  PubMed  Google Scholar 

  • Regev, L., & Baram, T. Z. (2014). Corticotropin releasing factor in neuroplasticity. Frontiers in Neuroendocrinology, 35, 171–179.

    Article  PubMed  Google Scholar 

  • Ressler, K. J., & Nemeroff, C. B. (1999). Role of norepinephrine in the pathophysiology and treatment of mood disorders. Biological Psychiatry, 46, 1219–1233.

    Article  PubMed  Google Scholar 

  • Ressler, K. J., & Nemeroff, C. B. (2000). Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depression and Anxiety, 12(Suppl 1), 2–19.

    Article  PubMed  Google Scholar 

  • Richter-Levin, G., & Akirav, I. (2000). Amygdala-hippocampus dynamic interaction in relation to memory. Molecular Neurobiology, 22(1–3), 11–20.

    Article  PubMed  Google Scholar 

  • Robbins, T. W., & Everitt, B. J. (1995). Arousal systems and attention. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 703–720). The MIT Press.

    Google Scholar 

  • Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition, 55(1), 11–29.

    Article  PubMed  Google Scholar 

  • Rolls, E. T. (2017). The roles of the orbitofrontal cortex via the habenula in non-reward and depression, and in the responses of serotonin and dopamine neurons. Neuroscience and Biobehavioral Reviews, 75, 331–334.

    Article  PubMed  Google Scholar 

  • Rolls, E. T. (2019). The cingulate cortex and limbic systems for emotion, action, and memory. Brain Structure & Function, 224(9), 3001–3018.

    Article  Google Scholar 

  • Rolls, E. T. (2019a). The cingulate cortex and limbic systems for action, emotion, and memory. In B. A. Vogt (Ed.), Handbook of clinical neurology: Cingulate cortex (pp. 23–37). Elsevier.

    Chapter  Google Scholar 

  • Rolls, E. T. (2019b). The orbitofrontal cortex. Oxford University Press.

    Book  Google Scholar 

  • Rolls, E. T., & Grabenhorst, F. (2008). The orbitofrontal cortex and beyond: From affect to decision-making. Progress in Neurobiology, 86, 216–244.

    Article  PubMed  Google Scholar 

  • Rolls, E. T., & Xiang, J. Z. (2005). Reward-spatial view representations and learning in the primate hippocampus. The Journal of Neuroscience, 25(26), 6167–6174.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rolls, E. T., Cheng, W., & Feng, J. (2020). The orbitofrontal cortex: Reward, emotion and depression. Brain Communications, 2(2), fcaa196.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy, M., Shohamy, D., & Wager, T. D. (2012). Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends in Cognitive Sciences, 16(3), 147–156.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudebeck, P. H., Saunders, R. C., Prescott, A. T., Chau, L. S., & Murray, E. A. (2013). Prefrontal mechanisms of behavioral flexibility, emotion regulation and value updating. Nature Neuroscience, 16, 1140–1145.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudnick, G., & Clark, J. (1993). From synapse to vesicle: The reuptake and storage of biogenic amine neurotransmitters. Biochimica et Biophysica Acta, 1144(3), 249–263.

    Article  PubMed  Google Scholar 

  • Rushworth, M. F., Kolling, N., Sallet, J., & Mars, R. B. (2012). Valuation and decision making in frontal cortex: One or many serial or parallel systems? Current Opinion in Neurobiology, 22, 946–955.

    Article  PubMed  Google Scholar 

  • Sah, P., Faber, E. S., Lopez De Armentia, M., & Power, J. (2003). The amygdaloid complex: Anatomy and physiology. Physiological Reviews, 83(3), 803–834.

    Article  PubMed  Google Scholar 

  • Saper, C. B., & Lowell, B. B. (2014). The hypothalamus. Current Biology, 24(23), R1111–R1116.

    Article  PubMed  Google Scholar 

  • Scheidereit, C., Krauter, P., von der Ahe, D., Janich, S., Rabenau, O., Cato, A. C., Suske, G., Westphal, H. M., & Beato, M. (1986). Mechanism of gene regulation by steroid hormones. Journal of Steroid Biochemistry, 24(1), 19–24.

    Article  PubMed  Google Scholar 

  • Schloss, P., & Williams, D. C. (1998). The serotonin transporter: A primary target for antidepressant drugs. Journal of Psychopharmacology, 12(2), 115–121.

    Article  PubMed  Google Scholar 

  • Schoenbaum, G., Roesch, M. R., Stalnaker, T. A., & Takahashi, Y. K. (2009). A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nature Reviews. Neuroscience, 10(12), 885–892.

    Article  PubMed  PubMed Central  Google Scholar 

  • Šimić, G., Tkalčić, M., Vukić, V., Mulc, D., Španić, E., Šagud, M., Olucha-Bordonau, F. E., Vukšić, M., Hof, R., & P. (2021). Understanding emotions: Origins and roles of the Amygdala. Biomolecules, 11(6), 823.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevens, F. L., Hurley, R. A., & Taber, K. H. (2011). Anterior cingulate cortex: Unique role in cognition and emotion. The Journal of Neuropsychiatry and Clinical Neurosciences, 23(2), 121–125.

    Article  PubMed  Google Scholar 

  • Suri, D., & Vaidya, V. A. (2013). Glucocorticoid regulation of brain-derived neurotrophic factor: Relevance to hippocampal structural and functional plasticity. Neuroscience, 239, 196–213.

    Article  PubMed  Google Scholar 

  • Suridjan, I., Boileau, I., Bagby, M., et al. (2012). Dopamine response to psychosocial stress in humans and its relationship to individual differences in personality traits. Journal of Psychiatric Research, 46, 890–897.

    Article  PubMed  Google Scholar 

  • Suzuki, W. A., & Eichenbaum, H. (2000). The neurophysiology of memory. Annals of the New York Academy of Sciences, 911, 175–191.

    Article  PubMed  Google Scholar 

  • Tafet, G. E., & Bernardini, R. (2003). Psychoneuroendocrinological links between chronic stress and depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 27, 893–903.

    Article  PubMed  Google Scholar 

  • Tafet, G. E., & Nemeroff, C. B. (2016). The links between stress and depression: Psychoneuroendocrinological, genetic, and environmental interactions. The Journal of Neuropsychiatry and Clinical Neurosciences, 28(2), 77–88.

    Article  PubMed  Google Scholar 

  • Tafet, G. E., Toister-Achituv, M., & Shinitzky, M. (2001). Enhancement of serotonin uptake by cortisol: A possible link between stress and depression. Cognitive, Affective, and Behavioral Neuroscience, 1, 96–104.

    Article  Google Scholar 

  • Taliaz, D., Loya, A., Gersner, R., Haramati, S., Chen, A., & Zangen, A. (2011). Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor. The Journal of Neuroscience, 31(12), 4475–4483.

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmermans, W., Xiong, H., Hoogenraad, C. C., et al. (2013). Stress and excitatory synapses: From health to disease. Neuroscience, 248, 626–636.

    Article  PubMed  Google Scholar 

  • Truss, M., & Beato, M. (1993). Steroid hormone receptors: Interaction with deoxyribonucleic acid and transcription factors. Endocrine Reviews, 14(4), 459–479.

    PubMed  Google Scholar 

  • Ulrich-Lai, Y. M., & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews. Neuroscience, 10, 397–409.

    Article  PubMed  PubMed Central  Google Scholar 

  • Valentino, R. J., Foote, S. L., & Page, M. E. (1993). The locus coeruleus as a site for integrating corticotropin-releasing factor and noradrenergic mediation of stress response. Annals of the New York Academy of Sciences, 697, 171–187.

    Article  Google Scholar 

  • van Riel, E., van Gemert, N. G., Meijer, O. C., et al. (2004). Effect of early life stress on serotonin responses in the hippocampus of young adult rats. Synapse, 53, 11–19.

    Article  PubMed  Google Scholar 

  • Vogt, B. A. (2009). Cingulate neurobiology and disease. Oxford University Press.

    Google Scholar 

  • Walker, D. L., Miles, L. A., & Davis, M. (2009). Selective participation of the bed nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic fear-like responses. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33(8), 1291–1308.

    Article  PubMed  Google Scholar 

  • Waterhouse, E. G., & Xu, B. (2009). New insights into the role of brain-derived neurotrophic factor in synaptic plasticity. Molecular and Cellular Neurosciences, 42(2), 81–89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Winecoff, A., Labar, K. S., Madden, D. J., Cabeza, R., & Huettel, S. A. (2011). Cognitive and neural contributors to emotion regulation in aging. Social Cognitive and Affective Neuroscience, 6(2), 165–176.

    Article  PubMed  Google Scholar 

  • Wochnik, G. M., Rüegg, J., Abel, G. A., Schmidt, U., Holsboer, F., & Rein, T. (2005). FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. The Journal of Biological Chemistry, 280(6), 4609–4616.

    Article  PubMed  Google Scholar 

  • Wu, G., Feder, A., Cohen, H., Kim, J. J., Calderon, S., Charney, D. S., & Mathé, A. A. (2013). Understanding resilience. Frontiers in Behavioral Neuroscience, 7, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, Y., & Wang, J. Z. (2017). From structure to behavior in basolateral amygdala-hippocampus circuits. Frontiers in Neural Circuits, 11, 86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziegler, D. R., Edwards, M. R., Ulrich-Lai, Y. M., Herman, J. P., & Cullinan, W. E. (2012). Brainstem origins of glutamatergic innervation of the rat hypothalamic paraventricular nucleus. The Journal of Comparative Neurology, 520, 2369–2394.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tafet, G.E. (2022). Neurobiological Approach to Stress. In: Neuroscience of Stress. Springer, Cham. https://doi.org/10.1007/978-3-031-00864-1_2

Download citation

Publish with us

Policies and ethics