Skip to main content

Recent Theoretical Advances in Non-Convex Optimization

  • Chapter
  • First Online:
High-Dimensional Optimization and Probability

Abstract

Motivated by recent increased interest in optimization algorithms for non-convex optimization in application to training deep neural networks and other optimization problems in data analysis, we give an overview of recent theoretical results on global performance guarantees of optimization algorithms for non-convex optimization. We start with classical arguments showing that general non-convex problems could not be solved efficiently in a reasonable time. Then we give a list of problems that can be solved efficiently to find the global minimizer by exploiting the structure of the problem as much as it is possible. Another way to deal with non-convexity is to relax the goal from finding the global minimum to finding a stationary point or a local minimum. For this setting, we first present known results for the convergence rates of deterministic first-order methods, which are then followed by a general theoretical analysis of optimal stochastic and randomized gradient schemes, and an overview of the stochastic first-order methods. After that, we discuss quite general classes of non-convex problems, such as minimization of α-weakly quasi-convex functions and functions that satisfy Polyak–Łojasiewicz condition, which still allow obtaining theoretical convergence guarantees of first-order methods. Then we consider higher-order and zeroth-order/derivative-free methods and their convergence rates for non-convex optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also this webpage with the list of references being updated https://sunju.org/research/nonconvex/.

  2. 2.

    By ϕ(a), where \(a = (a_1,\ldots ,a_n)^\top \in {\mathbb R}^n\) is multidimensional vector, we mean vector (ϕ(a1), …, ϕ(an)).

  3. 3.

    Here \(\mathbb {E}_{\xi _k}[\cdot ]\) is a mathematical expectation conditioned on everything despite ξk, i.e., expectation is taken w.r.t. the randomness coming only from ξk.

  4. 4.

    In the original paper [160], the authors considered more general situation when stochastic realizations f(x, ξ) have Hölder-continuous gradients.

  5. 5.

    This technique is applied in distributed optimization to reduce the overall communication cost (e.g., see [4, 27, 113]). However, methods for distributed optimization are out of scope of our survey.

  6. 6.

    For simplicity, we neglect all parameters except m and ε, see the details in Table 2.

  7. 7.

    To distinguish exponents from superindexes, we use braces (⋅) for exponents.

  8. 8.

    In fact, most of the results from [118] do not rely on the finite-sum structure of f.

References

  1. N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan, T. Ma, Finding approximate local minima faster than gradient descent, in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1195–1199 (2017)

    Google Scholar 

  2. K. Ahn, C. Yun, S. Sra, Sgd with shuffling: optimal rates without component convexity and large epoch requirements. Adv. Neural Inf. Process. Syst. 33 (2020)

    Google Scholar 

  3. A. Ajalloeian, S.U. Stich, Analysis of sgd with biased gradient estimators. Preprint (2020). arXiv:2008.00051

    Google Scholar 

  4. D. Alistarh, D. Grubic, J. Li, R. Tomioka, M. Vojnovic, Qsgd: Communication-efficient sgd via gradient quantization and encoding. Adv. Neural Inf. Process. Syst. 1709–1720 (2017)

    Google Scholar 

  5. Z. Allen-Zhu, Natasha: Faster non-convex stochastic optimization via strongly non-convex parameter, in International Conference on Machine Learning, pp. 89–97 (2017)

    Google Scholar 

  6. Z. Allen-Zhu, How to make the gradients small stochastically: Even faster convex and nonconvex sgd, in Advances in Neural Information Processing Systems, pp. 1157–1167 (2018)

    Google Scholar 

  7. Z. Allen-Zhu, Katyusha x: Simple momentum method for stochastic sum-of-nonconvex optimization, in International Conference on Machine Learning, pp. 179–185 (2018)

    Google Scholar 

  8. Z. Allen-Zhu, Natasha 2: Faster non-convex optimization than sgd, in Advances in Neural Information Processing Systems, pp. 2675–2686 (2018)

    Google Scholar 

  9. Z. Allen-Zhu, Y. Li, Neon2: Finding local minima via first-order oracles, in Advances in Neural Information Processing Systems, pp. 3716–3726 (2018)

    Google Scholar 

  10. Z. Allen-Zhu, Y. Li, Can sgd learn recurrent neural networks with provable generalization? in Advances in Neural Information Processing Systems, pp. 10331–10341 (2019)

    Google Scholar 

  11. Z. Allen-Zhu, Y. Li, Y. Liang, Learning and generalization in overparameterized neural networks, going beyond two layers, in Advances in Neural Information Processing Systems, pp. 6158–6169 (2019)

    Google Scholar 

  12. Z. Allen-Zhu, Y. Li, Z. Song, A convergence theory for deep learning via over-parameterization, in International Conference on Machine Learning, pp. 242–252 (PMLR, 2019)

    Google Scholar 

  13. Z. Allen-Zhu, Y. Li, Z. Song, On the convergence rate of training recurrent neural networks, in Advances in Neural Information Processing Systems, pp. 6676–6688 (2019)

    Google Scholar 

  14. A. Anandkumar, R. Ge, Efficient approaches for escaping higher order saddle points in non-convex optimization, in Conference on Learning Theory, pp. 81–102 (PMLR, 2016)

    Google Scholar 

  15. Y. Arjevani, Y. Carmon, J.C. Duchi, D.J. Foster, N. Srebro, B. Woodworth, Lower bounds for non-convex stochastic optimization. Preprint (2019). arXiv:1912.02365

    Google Scholar 

  16. Y. Arjevani, Y. Carmon, J.C. Duchi, D.J. Foster, A. Sekhari, K. Sridharan, Second-order information in non-convex stochastic optimization: Power and limitations, in Conference on Learning Theory, pp. 242–299 (2020)

    Google Scholar 

  17. S. Arora, N. Cohen, N. Golowich, W. Hu, A convergence analysis of gradient descent for deep linear neural networks. Preprint (2018). arXiv:1810.02281

    Google Scholar 

  18. F. Bach, R. Jenatton, J. Mairal, G. Obozinski, et al., Optimization with sparsity-inducing penalties. Found. Trends® Mach. Learn. 4(1), 1–106 (2012)

    Google Scholar 

  19. R. Baraniuk, M. Davenport, R. DeVore, M. Wakin, A simple proof of the restricted isometry property for random matrices. Constructive Approximation 28(3), 253–263 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Bazarova, A. Beznosikov, A. Gasnikov, Linearly convergent gradient-free methods for minimization of symmetric parabolic approximation. Preprint (2020). arXiv:2009.04906

    Google Scholar 

  21. M. Belkin, Fit without fear: Remarkable mathematical phenomena of deep learning through the prism of interpolation. Acta Numerica 30, 203–248 (2021)

    Article  MathSciNet  Google Scholar 

  22. A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex Optimization (Society for Industrial and Applied Mathematics, 2001)

    Google Scholar 

  23. A.S. Berahas, L. Cao, K. Choromanski, K. Scheinberg, Linear interpolation gives better gradients than gaussian smoothing in derivative-free optimization (2019)

    Google Scholar 

  24. A.S. Berahas, L. Cao, K. Scheinberg, Global convergence rate analysis of a generic line search algorithm with noise (2019)

    Google Scholar 

  25. A.S. Berahas, L. Cao, K. Choromanski, K. Scheinberg, A theoretical and empirical comparison of gradient approximations in derivative-free optimization (2020)

    Google Scholar 

  26. E.H. Bergou, E. Gorbunov, P. Richtárik, Stochastic three points method for unconstrained smooth minimization (2019)

    Google Scholar 

  27. A. Beznosikov, S. Horváth, P. Richtárik, M. Safaryan, On biased compression for distributed learning. Preprint (2020). arXiv:2002.12410

    Google Scholar 

  28. S. Bhojanapalli, A. Kyrillidis, S. Sanghavi, Dropping convexity for faster semi-definite optimization, in Conference on Learning Theory, pp. 530–582 (2016)

    Google Scholar 

  29. E.G. Birgin, J. Gardenghi, J.M. Martínez, S.A. Santos, P.L. Toint, Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models. Mathematical Programming 163(1–2), 359–368 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Blum, J. Hopcroft, R. Kannan, Foundations of Data Science (Cambridge University Press, 2016)

    Google Scholar 

  31. A. Blum, R.L. Rivest, Training a 3-node neural network is np-complete, in Advances in Neural Information Processing Systems, pp. 494–501 (1989)

    Google Scholar 

  32. T. Blumensath, M.E. Davies, Iterative hard thresholding for compressed sensing. Appl. Comput. Harmonic Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. L. Bogolubsky, P. Dvurechensky, A. Gasnikov, G. Gusev, Y. Nesterov, A.M. Raigorodskii, A. Tikhonov, M. Zhukovskii, Learning supervised pagerank with gradient-based and gradient-free optimization methods, in Advances in Neural Information Processing Systems 29, ed. by D.D. Lee, M. Sugiyama, U.V. Luxburg, I. Guyon, R. Garnett (Curran Associates, Inc., 2016), pp. 4914–4922. arXiv:1603.00717

    Google Scholar 

  34. L. Bottou, Curiously fast convergence of some stochastic gradient descent algorithms, in Proceedings of the Symposium on Learning and Data Science, Paris (2009)

    Google Scholar 

  35. L. Bottou, Large-scale machine learning with stochastic gradient descent, in Proceedings of COMPSTAT’2010 (Springer, 2010), pp. 177–186

    Google Scholar 

  36. L. Bottou, Stochastic gradient descent tricks, in Neural Networks: Tricks of the Trade (Springer, 2012), pp. 421–436

    Google Scholar 

  37. L. Bottou, F.E. Curtis, J. Nocedal, Optimization methods for large-scale machine learning. SIAM Review 60(2), 223–311 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Boyd, L. Vandenberghe, Convex Optimization (NY Cambridge University Press, 2004)

    Google Scholar 

  39. J. Bu, M. Mesbahi, A note on Nesterov’s accelerated method in nonconvex optimization: a weak estimate sequence approach. Preprint (2020). arXiv:2006.08548

    Google Scholar 

  40. S. Bubeck, Introduction to online optimization (2011)

    Google Scholar 

  41. S. Bubeck, Convex optimization: Algorithms and complexity. Found. Trends Mach. Learn. 8(3–4), 231–357 (Nov 2015)

    Article  MATH  Google Scholar 

  42. E.J. Candès, B. Recht, Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717 (2009)

    Google Scholar 

  43. E.J. Candès, T. Tao, Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. E.J. Candès, T. Tao, The power of convex relaxation: Near-optimal matrix completion. IEEE Trans. Inf. Theory 56(5), 2053–2080 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. E.J. Candès, M.B. Wakin, S.P. Boyd, Enhancing sparsity by reweighted 1 minimization. J. Fourier Anal. Appl. 14(5–6), 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. E.J. Candès, X. Li, M. Soltanolkotabi, Phase retrieval via wirtinger flow: Theory and algorithms. IEEE Trans. Inf. Theory 61(4), 1985–2007 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Y. Carmon, J.C. Duchi, Gradient descent efficiently finds the cubic-regularized non-convex newton step. Preprint (2016). arXiv:1612.00547

    Google Scholar 

  48. Y. Carmon, J.C. Duchi, O. Hinder, A. Sidford, “Convex until proven guilty”: Dimension-free acceleration of gradient descent on non-convex functions, in Proceedings of Machine Learning Research, vol. 70 (International Convention Centre, Sydney, Australia, 06–11 Aug 2017), pp. 654–663. PMLR

    Google Scholar 

  49. Y. Carmon, J.C. Duchi, O. Hinder, A. Sidford, Accelerated methods for nonconvex optimization. SIAM J. Optim. 28(2), 1751–1772 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Y. Carmon, J.C. Duchi, O. Hinder, A. Sidford, Lower bounds for finding stationary points II: first-order methods. Mathematical Programming (Sep 2019)

    Google Scholar 

  51. Y. Carmon, J.C. Duchi, O. Hinder, A. Sidford, Lower bounds for finding stationary points i. Mathematical Programming 184(1), 71–120 (Nov 2020)

    Article  MathSciNet  MATH  Google Scholar 

  52. C. Cartis, N.I. Gould, P.L. Toint, Adaptive cubic regularisation methods for unconstrained optimization. part i: motivation, convergence and numerical results. Mathematical Programming 127(2), 245–295 (2011)

    Google Scholar 

  53. C. Cartis, N.I.M. Gould, P.L. Toint, Adaptive cubic regularisation methods for unconstrained optimization. part ii: worst-case function- and derivative-evaluation complexity. Mathematical Programming 130(2), 295–319 (2011)

    Google Scholar 

  54. C. Cartis, N.I.M. Gould, P.L. Toint, Improved second-order evaluation complexity for unconstrained nonlinear optimization using high-order regularized models (2018). arXiv:1708.04044

    Google Scholar 

  55. C. Cartis, N.I. Gould, P.L. Toint, Universal regularization methods: Varying the power, the smoothness and the accuracy. SIAM J. Optim. 29(1), 595–615 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  56. V. Charisopoulos, A.R. Benson, A. Damle, Entrywise convergence of iterative methods for eigenproblems. Preprint (2020). arXiv:2002.08491

    Google Scholar 

  57. Y. Chen, Y. Chi, Harnessing structures in big data via guaranteed low-rank matrix estimation. Preprint (2018). arXiv:1802.08397

    Google Scholar 

  58. Z. Chen, T. Yang, A variance reduction method for non-convex optimization with improved convergence under large condition number. Preprint (2018). arXiv:1809.06754

    Google Scholar 

  59. Z. Chen, Y. Zhou, Momentum with variance reduction for nonconvex composition optimization. Preprint (2020). arXiv:2005.07755

    Google Scholar 

  60. X. Chen, S. Liu, R. Sun, M. Hong, On the convergence of a class of adam-type algorithms for non-convex optimization. Preprint (2018). arXiv:1808.02941

    Google Scholar 

  61. Y. Chen, Y. Chi, J. Fan, C. Ma, Gradient descent with random initialization: Fast global convergence for nonconvex phase retrieval. Mathematical Programming 176(1–2), 5–37 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  62. Y. Chi, Y.M. Lu, Y. Chen, Nonconvex optimization meets low-rank matrix factorization: An overview. Preprint (2018). arXiv:1809.09573

    Google Scholar 

  63. Collection of optimizers for pytorch, https://github.com/jettify/pytorch-optimizer

  64. P.L. Combettes, J.-C. Pesquet, Proximal splitting methods in signal processing, in Fixed-Point Algorithms for Inverse Problems in Science and Engineering (Springer, 2011), pp. 185–212

    Google Scholar 

  65. A. Conn, N. Gould, P. Toint, Trust Region Methods (Society for Industrial and Applied Mathematics, 2000)

    Google Scholar 

  66. A. Conn, K. Scheinberg, L. Vicente, Introduction to Derivative-Free Optimization (Society for Industrial and Applied Mathematics, 2009)

    Google Scholar 

  67. F.E. Curtis, K. Scheinberg, Optimization methods for supervised machine learning: From linear models to deep learning. Preprint (2017). arXiv:1706.10207

    Google Scholar 

  68. A. Cutkosky, F. Orabona, Momentum-based variance reduction in non-convex sgd, in Advances in Neural Information Processing Systems, pp. 15236–15245 (2019)

    Google Scholar 

  69. C.D. Dang, G. Lan, Stochastic block mirror descent methods for nonsmooth and stochastic optimization. SIAM J. Optim. 25(2), 856–881 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  70. D. Davis, D. Drusvyatskiy, Stochastic model-based minimization of weakly convex functions. SIAM J. Optim. 29(1), 207–239 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  71. A. Defazio, Understanding the role of momentum in non-convex optimization: Practical insights from a lyapunov analysis. Preprint (2020). arXiv:2010.00406

    Google Scholar 

  72. A. Defazio, L. Bottou, On the ineffectiveness of variance reduced optimization for deep learning, in Advances in Neural Information Processing Systems, pp. 1753–1763 (2019)

    Google Scholar 

  73. A. Defazio, F. Bach, S. Lacoste-Julien, Saga: A fast incremental gradient method with support for non-strongly convex composite objectives, in Proceedings of the 27th International Conference on Neural Information Processing Systems, NIPS’14 (MIT Press, Cambridge, MA, USA, 2014), pp. 1646–1654

    Google Scholar 

  74. A. Defazio, J. Domke, et al., Finito: A faster, permutable incremental gradient method for big data problems, in International Conference on Machine Learning, pp. 1125–1133 (2014)

    Google Scholar 

  75. A. Défossez, L. Bottou, F. Bach, N. Usunier, On the convergence of adam and adagrad. Preprint (2020). arXiv:2003.02395

    Google Scholar 

  76. V. Demin, D. Nekhaev, I. Surazhevsky, K. Nikiruy, A. Emelyanov, S. Nikolaev, V. Rylkov, M. Kovalchuk, Necessary conditions for stdp-based pattern recognition learning in a memristive spiking neural network. Neural Networks 134, 64–75 (2021)

    Article  Google Scholar 

  77. J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional transformers for language understanding. Preprint (2018). arXiv:1810.04805

    Google Scholar 

  78. J. Diakonikolas, M.I. Jordan, Generalized momentum-based methods: A Hamiltonian perspective. Preprint (2019). arXiv:1906.00436

    Google Scholar 

  79. T. Ding, D. Li, R. Sun, Spurious local minima exist for almost all over-parameterized neural networks (2019)

    Google Scholar 

  80. J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(Jul.), 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  81. J. Duchi, M.I. Jordan, B. McMahan, Estimation, optimization, and parallelism when data is sparse, in Advances in Neural Information Processing Systems, pp. 2832–2840 (2013)

    Google Scholar 

  82. D. Dvinskikh, A. Ogaltsov, A. Gasnikov, P. Dvurechensky, V. Spokoiny, On the line-search gradient methods for stochastic optimization. IFAC-PapersOnLine 53(2), 1715–1720 (2020). 21th IFAC World Congress. arXiv:1911.08380

    Google Scholar 

  83. P. Dvurechensky, Gradient method with inexact oracle for composite non-convex optimization (2017). arXiv:1703.09180

    Google Scholar 

  84. P. Dvurechensky, M. Staudigl, Hessian barrier algorithms for non-convex conic optimization (2021). arXiv:2111.00100

    Google Scholar 

  85. P. Dvurechensky, M. Staudigl, C.A. Uribe, Generalized self-concordant Hessian-barrier algorithms (2019). arXiv:1911.01522. WIAS Preprint No. 2693

    Google Scholar 

  86. P.E. Dvurechensky, A.V. Gasnikov, E.A. Nurminski, F.S. Stonyakin, Advances in Low-Memory Subgradient Optimization (Springer International Publishing, Cham, 2020), pp. 19–59. arXiv:1902.01572

    Google Scholar 

  87. P. Dvurechensky, E. Gorbunov, A. Gasnikov, An accelerated directional derivative method for smooth stochastic convex optimization. Eur. J. Oper. Res. 290(2), 601–621 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  88. P. Dvurechensky, S. Shtern, M. Staudigl, First-order methods for convex optimization. EURO J. Comput. Optim. 9, 100015 (2021). arXiv:2101.00935

    Google Scholar 

  89. N. Emmenegger, R. Kyng, A.N. Zehmakan, On the oracle complexity of higher-order smooth non-convex finite-sum optimization. Preprint (2021). arXiv:2103.05138

    Google Scholar 

  90. Y.G. Evtushenko, Numerical methods for finding global extrema (case of a non-uniform mesh). USSR Comput. Math. Math. Phys. 11(6), 38–54 (1971)

    Article  Google Scholar 

  91. C. Fang, C.J. Li, Z. Lin, T. Zhang, Spider: Near-optimal non-convex optimization via stochastic path-integrated differential estimator, in Advances in Neural Information Processing Systems, pp. 689–699 (2018)

    Google Scholar 

  92. C. Fang, Z. Lin, T. Zhang, Sharp analysis for nonconvex sgd escaping from saddle points, in Conference on Learning Theory, pp. 1192–1234 (2019)

    Google Scholar 

  93. I. Fatkhullin, B. Polyak, Optimizing static linear feedback: Gradient method. Preprint (2020). arXiv:2004.09875

    Google Scholar 

  94. M. Fazel, R. Ge, S.M. Kakade, M. Mesbahi, Global convergence of policy gradient methods for the linear quadratic regulator (2019)

    Google Scholar 

  95. S. Feizi, H. Javadi, J. Zhang, D. Tse, Porcupine neural networks:(almost) all local optima are global. Preprint (2017). arXiv:1710.02196

    Google Scholar 

  96. A.D. Flaxman, A.T. Kalai, H.B. McMahan, Online convex optimization in the bandit setting: Gradient descent without a gradient, in Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05 (Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2005), pp. 385–394

    Google Scholar 

  97. C.A. Floudas, P.M. Pardalos, Encyclopedia of Optimization (Springer Science & Business Media, 2008)

    Google Scholar 

  98. A. Gasnikov, Universal Gradient Descent (MCCME, Moscow, 2021)

    Google Scholar 

  99. A. Gasnikov, P. Dvurechensky, M. Zhukovskii, S. Kim, S. Plaunov, D. Smirnov, F. Noskov, About the power law of the pagerank vector component distribution. part 2. The buckley–osthus model, verification of the power law for this model, and setup of real search engines. Numer. Anal. Appl. 11(1), 16–32 (2018)

    Google Scholar 

  100. R. Ge, J. Zou, Intersecting faces: Non-negative matrix factorization with new guarantees, in International Conference on Machine Learning, pp. 2295–2303 (PMLR, 2015)

    Google Scholar 

  101. R. Ge, F. Huang, C. Jin, Y. Yuan, Escaping from saddle points–online stochastic gradient for tensor decomposition, in Conference on Learning Theory, pp. 797–842 (2015)

    Google Scholar 

  102. S. Ghadimi, G. Lan, Stochastic first- and zeroth-order methods for nonconvex stochastic programming. SIAM J. Optim. 23(4), 2341–2368 (2013). arXiv:1309.5549

    Google Scholar 

  103. S. Ghadimi, G. Lan, Accelerated gradient methods for nonconvex nonlinear and stochastic programming. Mathematical Programming 156(1), 59–99 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  104. S. Ghadimi, G. Lan, H. Zhang, Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1), 267–305 (2016). arXiv:1308.6594

    Google Scholar 

  105. S. Ghadimi, G. Lan, H. Zhang, Generalized uniformly optimal methods for nonlinear programming. J. Scientif. Comput. 79(3), 1854–1881 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  106. M.X. Goemans, D.P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM (JACM) 42(6), 1115–1145 (1995)

    Google Scholar 

  107. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, 2016). http://www.deeplearningbook.org

  108. I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep learning, vol. 1 (MIT Press Cambridge, 2016)

    Google Scholar 

  109. E. Gorbunov, P. Dvurechensky, A. Gasnikov, An accelerated method for derivative-free smooth stochastic convex optimization. Preprint (2018). arXiv:1802.09022 (accepted to SIOPT)

    Google Scholar 

  110. E. Gorbunov, M. Danilova, A. Gasnikov, Stochastic optimization with heavy-tailed noise via accelerated gradient clipping, in Advances in Neural Information Processing Systems, vol. 33, ed. by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, H. Lin (Curran Associates, Inc., 2020), pp. 15042–15053

    Google Scholar 

  111. E. Gorbunov, F. Hanzely, P. Richtárik, A unified theory of sgd: Variance reduction, sampling, quantization and coordinate descent, in International Conference on Artificial Intelligence and Statistics, pp. 680–690 (2020)

    Google Scholar 

  112. E.A. Gorbunov, A. Bibi, O. Sener, E.H. Bergou, P. Richtárik, A stochastic derivative free optimization method with momentum, in ICLR (2020)

    Google Scholar 

  113. E. Gorbunov, K.P. Burlachenko, Z. Li, P. Richtarik, Marina: Faster non-convex distributed learning with compression, in Proceedings of the 38th International Conference on Machine Learning, vol. 139 of Proceedings of Machine Learning Research, ed. by M. Meila, T. Zhang (PMLR, 18–24 Jul 2021), pp. 3788–3798

    Google Scholar 

  114. E. Gorbunov, M. Danilova, I. Shibaev, P. Dvurechensky, A. Gasnikov, Near-optimal high probability complexity bounds for non-smooth stochastic optimization with heavy-tailed noise (2021). arXiv:2106.05958

    Google Scholar 

  115. A. Gorodetskiy, A. Shlychkova, A.I. Panov, Delta schema network in model-based reinforcement learning, in Artificial General Intelligence, ed. by B. Goertzel, A. I. Panov, A. Potapov, R. Yampolskiy (Springer International Publishing, Cham, 2020), pp. 172–182

    Chapter  Google Scholar 

  116. A. Gotmare, N. S. Keskar, C. Xiong, R. Socher, A closer look at deep learning heuristics: Learning rate restarts, warmup and distillation. Preprint (2018). arXiv:1810.13243

    Google Scholar 

  117. R.M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, P. Richtárik, Sgd: General analysis and improved rates, in International Conference on Machine Learning, pp. 5200–5209 (2019)

    Google Scholar 

  118. R. Gower, O. Sebbouh, N. Loizou, Sgd for structured nonconvex functions: Learning rates, minibatching and interpolation, in International Conference on Artificial Intelligence and Statistics (PMLR, 2021), pp. 1315–1323

    Google Scholar 

  119. P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, K. He, Accurate, large minibatch sgd: Training imagenet in 1 hour. Preprint (2017). arXiv:1706.02677

    Google Scholar 

  120. A.O. Griewank, Generalized descent for global optimization. J. Optim. Theory Appl. 34(1), 11–39 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  121. S. Guminov, A. Gasnikov, Accelerated methods for alpha-weakly-quasi-convex problems. Preprint (2017). arXiv:1710.00797

    Google Scholar 

  122. S.V. Guminov, Y.E. Nesterov, P.E. Dvurechensky, A.V. Gasnikov, Accelerated primal-dual gradient descent with linesearch for convex, nonconvex, and nonsmooth optimization problems. Doklady Mathematics 99(2), 125–128 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  123. S. Guminov, P. Dvurechensky, N. Tupitsa, A. Gasnikov, On a combination of alternating minimization and Nesterov’s momentum, in Proceedings of the 38th International Conference on Machine Learning, vol. 145 of Proceedings of Machine Learning Research, Virtual (PMLR, 18–24 Jul 2021). arXiv:1906.03622. WIAS Preprint No. 2695

    Google Scholar 

  124. B.D. Haeffele, R. Vidal, Global optimality in neural network training, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7331–7339 (2017)

    Google Scholar 

  125. G. Haeser, H. Liu, Y. Ye, Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary. Mathematical Programming 178(1), 263–299 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  126. J.Z. HaoChen, S. Sra, Random shuffling beats sgd after finite epochs. Preprint (2018). arXiv:1806.10077

    Google Scholar 

  127. E. Hazan, K. Levy, S. Shalev-Shwartz, Beyond convexity: Stochastic quasi-convex optimization, in Advances in Neural Information Processing Systems, pp. 1594–1602 (2015)

    Google Scholar 

  128. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  129. O. Hinder, A. Sidford, N. Sohoni, Near-optimal methods for minimizing star-convex functions and beyond, in Conference on Learning Theory (PMLR, 2020), pp. 1894–1938

    Google Scholar 

  130. T. Hofmann, A. Lucchi, S. Lacoste-Julien, B. McWilliams, Variance reduced stochastic gradient descent with neighbors, in Advances in Neural Information Processing Systems, pp. 2305–2313 (2015)

    Google Scholar 

  131. S. Horváth, D. Kovalev, K. Mishchenko, S. Stich, P. Richtárik, Stochastic distributed learning with gradient quantization and variance reduction. Preprint (2019). arXiv:1904.05115

    Google Scholar 

  132. S.A. Ilyuhin, A.V. Sheshkus, V.L. Arlazarov, Recognition of images of Korean characters using embedded networks, in Twelfth International Conference on Machine Vision (ICMV 2019), vol. 11433, ed. by W. Osten, D.P. Nikolaev (International Society for Optics and Photonics, SPIE, 2020), pp. 273–279

    Google Scholar 

  133. P. Jain, P. Kar, Non-convex optimization for machine learning. Found. Trends Mach. Learn. 10(3–4), 142–336 (2017)

    Article  MATH  Google Scholar 

  134. P. Jain, P. Netrapalli, S. Sanghavi, Low-rank matrix completion using alternating minimization, in Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 665–674 (2013)

    Google Scholar 

  135. Z. Ji, M.J. Telgarsky, Gradient descent aligns the layers of deep linear networks, in 7th International Conference on Learning Representations, ICLR 2019 (2019)

    Google Scholar 

  136. K. Ji, Z. Wang, Y. Zhou, Y. Liang, Improved zeroth-order variance reduced algorithms and analysis for nonconvex optimization (2019)

    Google Scholar 

  137. C. Jin, R. Ge, P. Netrapalli, S.M. Kakade, M.I. Jordan, How to escape saddle points efficiently. Proceedings of Machine Learning Research, vol. 70 (International Convention Centre, Sydney, Australia, 06–11 Aug 2017), pp. 1724–1732. PMLR

    Google Scholar 

  138. C. Jin, P. Netrapalli, M.I. Jordan, Accelerated gradient descent escapes saddle points faster than gradient descent, in Conference On Learning Theory (PMLR, 2018), pp. 1042–1085

    Google Scholar 

  139. C. Jin, P. Netrapalli, R. Ge, S. M. Kakade, M. I. Jordan, On nonconvex optimization for machine learning: Gradients, stochasticity, and saddle points. J. ACM (JACM) 68(2), 1–29 (2021)

    Google Scholar 

  140. R. Johnson, T. Zhang, Accelerating stochastic gradient descent using predictive variance reduction, in Advances in Neural Information Processing Systems, pp. 315–323 (2013)

    Google Scholar 

  141. H. Karimi, J. Nutini, M. Schmidt, Linear convergence of gradient and proximal-gradient methods under the polyak-łojasiewicz condition, in Joint European Conference on Machine Learning and Knowledge Discovery in Databases (Springer, 2016), pp. 795–811

    Google Scholar 

  142. A. Khaled, P. Richtárik, Better theory for sgd in the nonconvex world. Preprint (2020). arXiv:2002.03329

    Google Scholar 

  143. S. Khot, G. Kindler, E. Mossel, R. O’Donnell, Optimal inapproximability results for max-cut and other 2-variable csps? SIAM J. Comput. 37(1), 319–357 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  144. A. Khritankov, Hidden feedback loops in machine learning systems: A simulation model and preliminary results, in Software Quality: Future Perspectives on Software Engineering Quality, ed. by D. Winkler, S. Biffl, D. Mendez, M. Wimmer, J. Bergsmann (Springer International Publishing, Cham, 2021), pp. 54–65

    Chapter  Google Scholar 

  145. R. Kidambi, P. Netrapalli, P. Jain, S. Kakade, On the insufficiency of existing momentum schemes for stochastic optimization, in 2018 Information Theory and Applications Workshop (ITA) (IEEE, 2018), pp. 1–9

    Google Scholar 

  146. L. Kiefer, M. Storath, A. Weinmann, Iterative potts minimization for the recovery of signals with discontinuities from indirect measurements: The multivariate case. Found. Comput. Math. 1–46 (2020)

    Google Scholar 

  147. D. P. Kingma, J. Ba, Adam: A method for stochastic optimization. Preprint (2014). arXiv:1412.6980

    Google Scholar 

  148. V. V. Kniaz, S. Y. Zheltov, F. Remondino, V. A. Knyaz, A. Gruen, Wire structure image-based 3d reconstruction aided by deep learning. volume XLIII-B2-2020, pp. 435–441, Göttingen, 2020. Copernicus. XXIV ISPRS Congress 2020 (virtual); Conference Location: Online; Conference Date: August 31–September 2, 2020; Due to the Corona virus (COVID-19) the conference was conducted virtually

    Google Scholar 

  149. V. V. Kniaz, V. A. Knyaz, V. Mizginov, A. Papazyan, N. Fomin, L. Grodzitsky, Adversarial dataset augmentation using reinforcement learning and 3d modeling, in Advances in Neural Computation, Machine Learning, and Cognitive Research IV, ed. by B. Kryzhanovsky, W. Dunin-Barkowski, V. Redko, Y. Tiumentsev (Springer International Publishing, Cham, 2021), pp. 316–329

    Chapter  Google Scholar 

  150. J. M. Kohler, A. Lucchi, Sub-sampled cubic regularization for non-convex optimization, in International Conference on Machine Learning, pp. 1895–1904 (2017)

    Google Scholar 

  151. G. Kornowski, O. Shamir, Oracle complexity in nonsmooth nonconvex optimization. Preprint (2021). arXiv:2104.06763

    Google Scholar 

  152. D. Kovalev, S. Horváth, P. Richtárik, Don’t jump through hoops and remove those loops: Svrg and katyusha are better without the outer loop, in Algorithmic Learning Theory, pp. 451–467 (2020)

    Google Scholar 

  153. A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  154. P. Kuderov, A. Panov, Planning with hierarchical temporal memory for deterministic markov decision problem, in Proceedings of the 13th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART (INSTICC, SciTePress, 2021), pp. 1073–1081

    Google Scholar 

  155. T. Lacroix, N. Usunier, G. Obozinski, Canonical tensor decomposition for knowledge base completion, in International Conference on Machine Learning, pp. 2863–2872 (2018)

    Google Scholar 

  156. G. Lan, First-Order and Stochastic Optimization Methods for Machine Learning (Springer, 2020)

    Google Scholar 

  157. G. Lan, Y. Yang, Accelerated stochastic algorithms for nonconvex finite-sum and multiblock optimization. SIAM J. Optim. 29(4), 2753–2784 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  158. J. Larson, M. Menickelly, S. M. Wild, Derivative-free optimization methods. Acta Numerica 28, 287–404 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  159. J. C. H. Lee, P. Valiant, Optimizing star-convex functions, in 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pp. 603–614 (2016)

    Google Scholar 

  160. Y. Lei, T. Hu, G. Li, K. Tang, Stochastic gradient descent for nonconvex learning without bounded gradient assumptions. IEEE Trans. Neural Networks Learn. Syst. (2019)

    Google Scholar 

  161. K. Y. Levy, The power of normalization: Faster evasion of saddle points. Preprint (2016). arXiv:1611.04831

    Google Scholar 

  162. Y. Li, K. Lee, Y. Bresler, Identifiability in blind deconvolution with subspace or sparsity constraints. IEEE Trans. Inf. Theory 62(7), 4266–4275 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  163. D. Li, T. Ding, R. Sun, Over-parameterized deep neural networks have no strict local minima for any continuous activations. Preprint (2018). arXiv:1812.11039

    Google Scholar 

  164. Z. Li, H. Bao, X. Zhang, P. Richtárik, Page: A simple and optimal probabilistic gradient estimator for nonconvex optimization. Preprint (2020). arXiv:2008.10898

    Google Scholar 

  165. Z. Li, P. Richtárik, A unified analysis of stochastic gradient methods for nonconvex federated optimization. Preprint (2020). arXiv:2006.07013

    Google Scholar 

  166. S. Liang, R. Sun, Y. Li, R. Srikant, Understanding the loss surface of neural networks for binary classification, in International Conference on Machine Learning, pp. 2835–2843 (2018)

    Google Scholar 

  167. S. Liu, B. Kailkhura, P.-Y. Chen, P. Ting, S. Chang, L. Amini, Zeroth-order stochastic variance reduction for nonconvex optimization (2018)

    Google Scholar 

  168. R. Livni, S. Shalev-Shwartz, O. Shamir, On the computational efficiency of training neural networks, in Advances in Neural Information Processing Systems, pp. 855–863 (2014)

    Google Scholar 

  169. N. Loizou, S. Vaswani, I. H. Laradji, S. Lacoste-Julien, Stochastic polyak step-size for sgd: An adaptive learning rate for fast convergence, in International Conference on Artificial Intelligence and Statistics (PMLR, 2021), pp. 1306–1314

    Google Scholar 

  170. S. Lojasiewicz, A topological property of real analytic subsets. Coll. du CNRS, Les équations aux dérivées partielles 117, 87–89 (1963)

    Google Scholar 

  171. I. Loshchilov, F. Hutter, Sgdr: Stochastic gradient descent with warm restarts. Preprint (2016). arXiv:1608.03983

    Google Scholar 

  172. A. Lucchi, J. Kohler, A stochastic tensor method for non-convex optimization. Preprint (2019). arXiv:1911.10367

    Google Scholar 

  173. C. Ma, K. Wang, Y. Chi, Y. Chen, Implicit regularization in nonconvex statistical estimation: Gradient descent converges linearly for phase retrieval and matrix completion, in International Conference on Machine Learning (PMLR, 2018), pp. 3345–3354

    Google Scholar 

  174. S. Ma, R. Bassily, M. Belkin, The power of interpolation: Understanding the effectiveness of sgd in modern over-parametrized learning, in International Conference on Machine Learning (PMLR, 2018), pp. 3325–3334

    Google Scholar 

  175. J. Mairal, Incremental majorization-minimization optimization with application to large-scale machine learning. SIAM J. Optim. 25(2), 829–855 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  176. D. Malik, A. Pananjady, K. Bhatia, K. Khamaru, P. L. Bartlett, M. J. Wainwright, Derivative-free methods for policy optimization: Guarantees for linear quadratic systems (2020)

    Google Scholar 

  177. J. Martens, Deep learning via hessian-free optimization, in International Conference on Machine Learning, vo 27, pp. 735–742 (2010)

    Google Scholar 

  178. T. Mikolov, Statistical language models based on neural networks, Presentation at Google, Mountain View, 2nd April, 80 (2012)

    Google Scholar 

  179. K. Mishchenko, E. Gorbunov, M. Takáč, P. Richtárik, Distributed learning with compressed gradient differences. Preprint (2019). arXiv:1901.09269

    Google Scholar 

  180. K. Mishchenko, A. Khaled, P. Richtárik, Random reshuffling: Simple analysis with vast improvements. Preprint (2020). arXiv:2006.05988

    Google Scholar 

  181. K. G. Murty, S. N. Kabadi, Some np-complete problems in quadratic and nonlinear programming. Mathematical Programming 39(2), 117–129 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  182. J. A. Nelder, R. Mead, A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  183. A. Nemirovski, Orth-method for smooth convex optimization. Izvestia AN SSSR Transl. Eng. Cybern. Soviet J. Comput. Syst. Sci. 2, 937–947 (1982)

    Google Scholar 

  184. Y. Nesterov, A method of solving a convex programming problem with convergence rate o(1∕k2). Soviet Math. Doklady 27(2), 372–376 (1983)

    MATH  Google Scholar 

  185. Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course (Kluwer Academic Publishers, Massachusetts, 2004)

    Book  MATH  Google Scholar 

  186. Y. Nesterov, How to make the gradients small. Optima 88, 10–11 (2012)

    Google Scholar 

  187. Y. Nesterov, Lectures on Convex Optimization, vol. 137 (Springer, 2018)

    Google Scholar 

  188. Y. Nesterov, B. Polyak, Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  189. Y. Nesterov, V. Spokoiny, Random gradient-free minimization of convex functions. Found. Comput. Math. 17(2), 527–566 (2017). First appeared in 2011 as CORE discussion paper 2011/16

    Google Scholar 

  190. Y. Nesterov, A. Gasnikov, S. Guminov, P. Dvurechensky, Primal-dual accelerated gradient methods with small-dimensional relaxation oracle. Optim. Methods Softw., 1–28 (2020). arXiv:1809.05895

    Google Scholar 

  191. B. Neyshabur, S. Bhojanapalli, D. McAllester, N. Srebro, Exploring generalization in deep learning, in Advances in Neural Information Processing Systems, pp. 5947–5956 (2017)

    Google Scholar 

  192. L. M. Nguyen, J. Liu, K. Scheinberg, M. Takáč, Sarah: A novel method for machine learning problems using stochastic recursive gradient, in International Conference on Machine Learning, pp. 2613–2621 (2017)

    Google Scholar 

  193. L. M. Nguyen, J. Liu, K. Scheinberg, M. Takáč, Stochastic recursive gradient algorithm for nonconvex optimization. Preprint (2017). arXiv:1705.07261

    Google Scholar 

  194. Q. Nguyen, M. C. Mukkamala, M. Hein, On the loss landscape of a class of deep neural networks with no bad local valleys. Preprint (2018). arXiv:1809.10749

    Google Scholar 

  195. L. M. Nguyen, Q. Tran-Dinh, D. T. Phan, P. H. Nguyen, M. van Dijk, A unified convergence analysis for shuffling-type gradient methods. Preprint (2020). arXiv:2002.08246

    Google Scholar 

  196. J. Nocedal, S. Wright, Numerical Optimization (Springer Science & Business Media, 2006)

    Google Scholar 

  197. K. Osawa, Y. Tsuji, Y. Ueno, A. Naruse, R. Yokota, S. Matsuoka, Second-order optimization method for large mini-batch: Training resnet-50 on imagenet in 35 epochs. Preprint (2018). arXiv:1811.12019, 1:2

    Google Scholar 

  198. N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, A. Swami, Practical black-box attacks against machine learning (2017)

    Google Scholar 

  199. V. Papyan, Y. Romano, J. Sulam, M. Elad, Convolutional dictionary learning via local processing, in Proceedings of the IEEE International Conference on Computer Vision, pp. 5296–5304 (2017)

    Google Scholar 

  200. S. Park, S. H. Jung, P. M. Pardalos, Combining stochastic adaptive cubic regularization with negative curvature for nonconvex optimization. J. Optim. Theory Appl. 184(3), 953–971 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  201. R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training recurrent neural networks, in International Conference on Machine Learning, pp. 1310–1318 (2013)

    Google Scholar 

  202. B. Polyak, Gradient methods for the minimisation of functionals. USSR Comput. Math. Math. Phys. 3(4), 864–878 (1963)

    Article  MATH  Google Scholar 

  203. B. T. Polyak, Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4(5), 1–17 (1964)

    Article  Google Scholar 

  204. B. Polyak, Introduction to Optimization (Optimization Software, New York, 1987)

    MATH  Google Scholar 

  205. Q. Qu, X. Li, Z. Zhu, A nonconvex approach for exact and efficient multichannel sparse blind deconvolution, in Advances in Neural Information Processing Systems, pp. 4015–4026 (2019)

    Google Scholar 

  206. S. Rajput, A. Gupta, D. Papailiopoulos, Closing the convergence gap of sgd without replacement. Preprint (2020). arXiv:2002.10400

    Google Scholar 

  207. S. J. Reddi, A. Hefny, S. Sra, B. Poczos, A. Smola, Stochastic variance reduction for nonconvex optimization, in International conference on machine learning, pp. 314–323 (2016)

    Google Scholar 

  208. S. J. Reddi, S. Sra, B. Poczos, A. J. Smola, Proximal stochastic methods for nonsmooth nonconvex finite-sum optimization, in Advances in Neural Information Processing Systems, pp. 1145–1153 (2016)

    Google Scholar 

  209. S. J. Reddi, S. Kale, S. Kumar, On the convergence of adam and beyond. Preprint (2019). arXiv:1904.09237

    Google Scholar 

  210. A. Rezanov, D. Yudin, Deep neural networks for ortophoto-based vehicle localization, in Advances in Neural Computation, Machine Learning, and Cognitive Research IV, ed. by B. Kryzhanovsky, W. Dunin-Barkowski, V. Redko, Y. Tiumentsev (Springer International Publishing, Cham, 2021), pp. 167–174

    Chapter  Google Scholar 

  211. A. Risteski, Y. Li, Algorithms and matching lower bounds for approximately-convex optimization, in NIPS (2016)

    Google Scholar 

  212. A. Roy, K. Balasubramanian, S. Ghadimi, P. Mohapatra, Escaping saddle-point faster under interpolation-like conditions, in Advances in Neural Information Processing Systems, p. 33 (2020)

    Google Scholar 

  213. C. W. Royer, S. J. Wright, Complexity analysis of second-order line-search algorithms for smooth nonconvex optimization. SIAM J. Optim. 28(2), 1448–1477 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  214. I. Safran, O. Shamir, Spurious local minima are common in two-layer relu neural networks, in International Conference on Machine Learning (PMLR, 2018), pp. 4433–4441

    Google Scholar 

  215. K. A. Sankararaman, S. De, Z. Xu, W. R. Huang, T. Goldstein, The impact of neural network overparameterization on gradient confusion and stochastic gradient descent. Preprint (2019). arXiv:1904.06963

    Google Scholar 

  216. M. Schmidt, N. L. Roux, Fast convergence of stochastic gradient descent under a strong growth condition. Preprint (2013). arXiv:1308.6370

    Google Scholar 

  217. M. Schmidt, N. Le Roux, F. Bach, Minimizing finite sums with the stochastic average gradient. Mathematical Programming 162(1–2), 83–112 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  218. M. Schumer, K. Steiglitz, Adaptive step size random search. IEEE Trans. Automatic Control 13(3), 270–276 (1968)

    Article  Google Scholar 

  219. O. Sebbouh, R. M. Gower, A. Defazio, On the convergence of the stochastic heavy ball method. Preprint (2020). arXiv:2006.07867

    Google Scholar 

  220. O. Sener, V. Koltun, Learning to guide random search, in International Conference on Learning Representations (2020)

    Google Scholar 

  221. S. Shalev-Shwartz, Sdca without duality, regularization, and individual convexity, in International Conference on Machine Learning, pp. 747–754 (2016)

    Google Scholar 

  222. Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, M. Segev, Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32(3), 87–109 (2015)

    Article  Google Scholar 

  223. Z. Shen, P. Zhou, C. Fang, A. Ribeiro, A stochastic trust region method for non-convex minimization. Preprint (2019). arXiv:1903.01540

    Google Scholar 

  224. L. Shi, Y. Chi, Manifold gradient descent solves multi-channel sparse blind deconvolution provably and efficiently, in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2020), pp. 5730–5734

    Google Scholar 

  225. B. Shi, W. J. Su, M. I. Jordan, On learning rates and schrödinger operators. Preprint (2020). arXiv:2004.06977

    Google Scholar 

  226. N. Shi, D. Li, M. Hong, R. Sun, Rmsprop converges with proper hyper-parameter, in International Conference on Learning Representations (2021)

    Google Scholar 

  227. I. Shibaev, P. Dvurechensky, A. Gasnikov, Zeroth-order methods for noisy Hölder-gradient functions. Optimization Letters (2021). (accepted), arXiv:2006.11857. https://doi.org/10.1007/s11590-021-01742-z

  228. Y. Shin, Effects of depth, width, and initialization: A convergence analysis of layer-wise training for deep linear neural networks. Preprint (2019). arXiv:1910.05874

    Google Scholar 

  229. N. Z. Shor, Generalized gradient descent with application to block programming. Kibernetika 3(3), 53–55 (1967)

    Google Scholar 

  230. A. Skrynnik, A. Staroverov, E. Aitygulov, K. Aksenov, V. Davydov, A. I. Panov, Forgetful experience replay in hierarchical reinforcement learning from expert demonstrations. Knowl. Based Syst. 218, 106844 (2021)

    Article  Google Scholar 

  231. L. N. Smith, Cyclical learning rates for training neural networks, in 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) (IEEE, 2017), pp. 464–472

    Google Scholar 

  232. M. V. Solodov, Incremental gradient algorithms with stepsizes bounded away from zero. Comput. Optim. Appl. 11(1), 23–35 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  233. M. Soltanolkotabi, A. Javanmard, J. D. Lee, Theoretical insights into the optimization landscape of over-parameterized shallow neural networks. IEEE Trans. Inf. Theory 65(2), 742–769 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  234. V. Spokoiny et al., Parametric estimation. finite sample theory. Ann. Stat. 40(6), 2877–2909 (2012)

    Google Scholar 

  235. F. S. Stonyakin, D. Dvinskikh, P. Dvurechensky, A. Kroshnin, O. Kuznetsova, A. Agafonov, A. Gasnikov, A. Tyurin, C. A. Uribe, D. Pasechnyuk, S. Artamonov, Gradient methods for problems with inexact model of the objective, in Mathematical Optimization Theory and Operations Research, ed. by M. Khachay, Y. Kochetov, P. Pardalos, (Springer International Publishing, Cham, 2019), pp. 97–114 arXiv:1902.09001

    Google Scholar 

  236. F. Stonyakin, A. Tyurin, A. Gasnikov, P. Dvurechensky, A. Agafonov, D. Dvinskikh, M. Alkousa, D. Pasechnyuk, S. Artamonov, V. Piskunova, Inexact model: A framework for optimization and variational inequalities. Optim. Methods Softw. (2021). (accepted), WIAS Preprint No. 2709, arXiv:2001.09013, arXiv:1902.00990. https://doi.org/10.1080/10556788.2021.1924714

  237. R. Sun, Optimization for deep learning: theory and algorithms. Preprint (2019). arXiv:1912.08957

    Google Scholar 

  238. I. Surazhevsky, V. Demin, A. Ilyasov, A. Emelyanov, K. Nikiruy, V. Rylkov, S. Shchanikov, I. Bordanov, S. Gerasimova, D. Guseinov, N. Malekhonova, D. Pavlov, A. Belov, A. Mikhaylov, V. Kazantsev, D. Valenti, B. Spagnolo, M. Kovalchuk, Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network. Chaos Solitons Fractals 146, 110890 (2021)

    Article  MATH  Google Scholar 

  239. I. Sutskever, J. Martens, G. Dahl, G. Hinton, On the importance of initialization and momentum in deep learning, in International Conference on Machine Learning, pp. 1139–1147 (2013)

    Google Scholar 

  240. G. Swirszcz, W. M. Czarnecki, R. Pascanu, Local minima in training of deep networks (2016)

    Google Scholar 

  241. Y. S. Tan, R. Vershynin, Online stochastic gradient descent with arbitrary initialization solves non-smooth, non-convex phase retrieval. Preprint (2019). arXiv:1910.12837

    Google Scholar 

  242. W. Tao, Z. Pan, G. Wu, Q. Tao, Primal averaging: A new gradient evaluation step to attain the optimal individual convergence. IEEE Trans. Cybern. 50(2), 835–845 (2018)

    Article  Google Scholar 

  243. A. Taylor, F. Bach, Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions, in Conference on Learning Theory, pp. 2934–2992 (2019)

    Google Scholar 

  244. T. Tieleman, G. Hinton, Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA Neural Networks Mach. Learn. 4(2), 26–31 (2012)

    Google Scholar 

  245. N. Tripuraneni, M. Stern, C. Jin, J. Regier, M. I. Jordan, Stochastic cubic regularization for fast nonconvex optimization, in Advances in Neural Information Processing Systems, pp. 2899–2908 (2018)

    Google Scholar 

  246. P. Tseng, An incremental gradient (-projection) method with momentum term and adaptive stepsize rule. SIAM J. Optim. 8(2), 506–531 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  247. I. Usmanova, Robust solutions to stochastic optimization problems. Master Thesis (MSIAM); Institut Polytechnique de Grenoble ENSIMAG, Laboratoire Jean Kuntzmann (2017)

    Google Scholar 

  248. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, in Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  249. S. Vaswani, F. Bach, M. Schmidt, Fast and faster convergence of sgd for over-parameterized models and an accelerated perceptron, in The 22nd International Conference on Artificial Intelligence and Statistics (PMLR, 2019), pp. 1195–1204

    Google Scholar 

  250. S. Vaswani, A. Mishkin, I. Laradji, M. Schmidt, G. Gidel, S. Lacoste-Julien, Painless stochastic gradient: Interpolation, line-search, and convergence rates, in Advances in Neural Information Processing Systems, pp. 3732–3745 (2019)

    Google Scholar 

  251. S. A. Vavasis, Black-box complexity of local minimization. SIAM J. Optim. 3(1), 60–80 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  252. R. Vidal, J. Bruna, R. Giryes, S. Soatto, Mathematics of deep learning. Preprint (2017). arXiv:1712.04741

    Google Scholar 

  253. Z. Wang, K. Ji, Y. Zhou, Y. Liang, V. Tarokh, Spiderboost: A class of faster variance-reduced algorithms for nonconvex optimization. Preprint (2018). arXiv:1810.10690

    Google Scholar 

  254. Z. Wang, K. Ji, Y. Zhou, Y. Liang, V. Tarokh, Spiderboost and momentum: Faster variance reduction algorithms, in Advances in Neural Information Processing Systems, pp. 2403–2413 (2019)

    Google Scholar 

  255. Z. Wang, Y. Zhou, Y. Liang, G. Lan, Stochastic variance-reduced cubic regularization for nonconvex optimization, in The 22nd International Conference on Artificial Intelligence and Statistics (PMLR, 2019), pp. 2731–2740

    Google Scholar 

  256. Z. Wang, Y. Zhou, Y. Liang, G. Lan, Cubic regularization with momentum for nonconvex optimization, in Uncertainty in Artificial Intelligence (PMLR, 2020), pp. 313–322

    Google Scholar 

  257. R. Ward, X. Wu, L. Bottou, Adagrad stepsizes: Sharp convergence over nonconvex landscapes, in International Conference on Machine Learning (PMLR, 2019), pp. 6677–6686

    Google Scholar 

  258. A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, B. Recht, The marginal value of adaptive gradient methods in machine learning, in Advances in Neural Information Processing Systems, pp. 4148–4158 (2017)

    Google Scholar 

  259. S. J. Wright, Optimization algorithms for data analysis. Math. Data 25, 49 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  260. F. Wu, P. Rebeschini, Hadamard wirtinger flow for sparse phase retrieval. Preprint (2020). arXiv:2006.01065

    Google Scholar 

  261. G. Xie, L. Luo, Z. Zhang, A general analysis framework of lower complexity bounds for finite-sum optimization. Preprint (2019). arXiv:1908.08394

    Google Scholar 

  262. Y. Xu, Momentum-based variance-reduced proximal stochastic gradient method for composite nonconvex stochastic optimization. Preprint (2020). arXiv:2006.00425

    Google Scholar 

  263. P. Xu, J. Chen, D. Zou, Q. Gu, Global convergence of langevin dynamics based algorithms for nonconvex optimization, in Advances in Neural Information Processing Systems, pp. 3122–3133 (2018)

    Google Scholar 

  264. Y. Xu, R. Jin, T. Yang, First-order stochastic algorithms for escaping from saddle points in almost linear time, in Advances in Neural Information Processing Systems, pp. 5530–5540 (2018)

    Google Scholar 

  265. P. Xu, F. Roosta, M. W. Mahoney, Newton-type methods for non-convex optimization under inexact hessian information. Mathematical Programming 184(1), 35–70 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  266. P. Xu, F. Roosta, M. W. Mahoney, Second-order optimization for non-convex machine learning: An empirical study, in Proceedings of the 2020 SIAM International Conference on Data Mining (SIAM, 2020), pp. 199–207

    Google Scholar 

  267. Y. Yan, T. Yang, Z. Li, Q. Lin, Y. Yang, A unified analysis of stochastic momentum methods for deep learning, in Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 2955–2961 (2018)

    Google Scholar 

  268. Z. Yang, L. F. Yang, E. X. Fang, T. Zhao, Z. Wang, M. Neykov, Misspecified nonconvex statistical optimization for sparse phase retrieval. Mathematical Programming 176(1–2), 545–571 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  269. C. Yun, S. Sra, A. Jadbabaie, Small nonlinearities in activation functions create bad local minima in neural networks. Preprint (2018). arXiv:1802.03487

    Google Scholar 

  270. J. Yun, A. C. Lozano, E. Yang, A general family of stochastic proximal gradient methods for deep learning. Preprint (2020). arXiv:2007.07484

    Google Scholar 

  271. M. Zaheer, S. Reddi, D. Sachan, S. Kale, S. Kumar, Adaptive methods for nonconvex optimization, in Advances in Neural Information Processing Systems, pp. 9793–9803 (2018)

    Google Scholar 

  272. R. Y. Zhang, Sharp global guarantees for nonconvex low-rank matrix recovery in the overparameterized regime. Preprint (2021). arXiv:2104.10790

    Google Scholar 

  273. J. Zhang, L. Xiao, Stochastic variance-reduced prox-linear algorithms for nonconvex composite optimization. Preprint (2020). arXiv:2004.04357

    Google Scholar 

  274. J. Zhang, L. Xiao, S. Zhang, Adaptive stochastic variance reduction for subsampled newton method with cubic regularization. Preprint (2018). arXiv:1811.11637

    Google Scholar 

  275. B. Zhang, J. Jin, C. Fang, L. Wang, Improved analysis of clipping algorithms for non-convex optimization, in Advances in Neural Information Processing Systems, p. 33 (2020)

    Google Scholar 

  276. J. Zhang, T. He, S. Sra, A. Jadbabaie, Why gradient clipping accelerates training: A theoretical justification for adaptivity, in International Conference on Learning Representations (2020)

    Google Scholar 

  277. J. Zhang, S. P. Karimireddy, A. Veit, S. Kim, S. Reddi, S. Kumar, S. Sra, Why are adaptive methods good for attention models? in Advances in Neural Information Processing Systems, p. 33 (2020)

    Google Scholar 

  278. Y. Zhang, Q. Qu, J. Wright, From symmetry to geometry: Tractable nonconvex problems. Preprint (2020). arXiv:2007.06753

    Google Scholar 

  279. Y. Zhang, Q. Qu, J. Wright, From symmetry to geometry: Tractable nonconvex problems. Preprint (2020). arXiv:2007.06753

    Google Scholar 

  280. Y. Zhang, Y. Zhou, K. Ji, M. M. Zavlanos, Boosting one-point derivative-free online optimization via residual feedback (2020)

    Google Scholar 

  281. C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals, Understanding deep learning (still) requires rethinking generalization. Commun. ACM 64(3), 107–115 (2021)

    Article  Google Scholar 

  282. H. Zhang, Y. Bi, J. Lavaei, General low-rank matrix optimization: Geometric analysis and sharper bounds. Preprint (2021). arXiv:2104.10356

    Google Scholar 

  283. A. Zhigljavsky, A. Zilinskas, Stochastic Global Optimization, vol. 9 (Springer Science & Business Media, 2007)

    Google Scholar 

  284. D. Zhou, Q. Gu, Lower bounds for smooth nonconvex finite-sum optimization, in International Conference on Machine Learning, pp. 7574–7583 (2019)

    Google Scholar 

  285. D. Zhou, Y. Tang, Z. Yang, Y. Cao, Q. Gu, On the convergence of adaptive gradient methods for nonconvex optimization. Preprint (2018). arXiv:1808.05671

    Google Scholar 

  286. D. Zhou, P. Xu, Q. Gu, Stochastic nested variance reduced gradient descent for nonconvex optimization, in Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  287. D. Zhou, P. Xu, Q. Gu, Stochastic variance-reduced cubic regularization methods. J. Mach. Learn. Res. 20(134), 1–47 (2019)

    MathSciNet  MATH  Google Scholar 

  288. D. Zhou, P. Xu, Q. Gu, Stochastic variance-reduced cubic regularization methods. J. Mach. Learn. Res. 20(134), 1–47 (2019)

    MathSciNet  MATH  Google Scholar 

  289. D. Zhou, Q. Gu, Stochastic recursive variance-reduced cubic regularization methods, in International Conference on Artificial Intelligence and Statistics (PMLR, 2020), pp. 3980–3990

    Google Scholar 

  290. X. Zhu, J. Han, B. Jiang, An adaptive high order method for finding third-order critical points of nonconvex optimization. Preprint (2020). arXiv:2008.04191

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to A. Gornov, A. Nazin, Yu. Nesterov, B. Polyak, and K. Scheinberg for fruitful discussions and their suggestions that helped to improve the quality of the text.

The research was partially supported by the Ministry of Science and Higher Education of the Russian Federation (Goszadaniye) No.075-00337-20-03, project No. 0714-2020-0005. The work of I. Shibaev was supported by the program “Leading Scientific Schools” (grant no. NSh-775.2022.1.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Gasnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Danilova, M. et al. (2022). Recent Theoretical Advances in Non-Convex Optimization. In: Nikeghbali, A., Pardalos, P.M., Raigorodskii, A.M., Rassias, M.T. (eds) High-Dimensional Optimization and Probability. Springer Optimization and Its Applications, vol 191. Springer, Cham. https://doi.org/10.1007/978-3-031-00832-0_3

Download citation

Publish with us

Policies and ethics