Skip to main content

Nonsmooth Mathematical Programs with Vanishing Constraints in Banach Spaces

  • Chapter
  • First Online:
High-Dimensional Optimization and Probability

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 191))

Abstract

In this chapter, we study the optimization problems with equality, inequality, and vanishing constraints in a Banach space where the objective function and the binding constraints are either differentiable at the optimal solution or Lipschitz near the optimal solution. We derive nonsmooth Karush–Kuhn–Tucker (KKT) type necessary optimality conditions for the above problem where Fréchet (or Gâteaux or Hadamard) derivatives are used for the differentiable functions and the Michel-Penot (M-P) subdifferentials are used for the Lipschitz continuous functions. We also introduce several modifications of some known constraint qualifications like Abadie constraint qualification, Cottle constraint qualification, Slater constraint qualification, Mangasarian–Fromovitz constraint qualification, and linear independence constraint qualification for the above mentioned problem which is called as the nonsmooth mathematical programs with vanishing constraints (NMPVC) in terms of the M-P subdifferentials and establish relationships among them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.M. Abadie, On the Kuhn-Tucker theorem, in Nonlinear Programming, ed. by J.M. Abadie (John Wiley, New York, 1967), pp. 21–36

    MATH  Google Scholar 

  2. W. Achtziger, C. Kanzow, Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications. Math. Program. 114, 69–99 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. M.S. Bajaraa, C.M. Shetty, Foundations of Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 122 (Springer, Berlin, 1976)

    Google Scholar 

  4. B.S. Bajara, J.J. Goode, M.Z. Nashed, On the cones of tangents with applications to mathematical programming. J. Optim. Theory Appl. 13, 389–426 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. T.Q. Bao, B.S. Mordukhovich, Existence of minimizers and necessary conditions in set-valued optimization with equilibrium constraint. Appl. Math. 52, 453–472 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. T.Q. Bao, P. Gupta, B.S. Mordukhovich, Suboptimality conditions for mathematical programs with equilibrium constraints. Taiwanese J. Math. 12(9), 2569–2592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming Theory and Algorithms, 2nd ed. (John Wiley, New York, 1993)

    MATH  Google Scholar 

  8. J.R. Birge, L. Qi, Semiregularity and generalized subdifferentials with applications to optimization. Math. Oper. Res. 18, 982–1005 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Cambini, L. Martein, Generalized Convexity and Optimization: Theory and Applications (Springer, Berlin, 2009)

    MATH  Google Scholar 

  10. F.H. Clarke, Optimization and Nonsmooth Analysis (Wiley-Interscience, New York, 1983)

    MATH  Google Scholar 

  11. M.L. Flegel, C. Kanzow, On M-stationary points for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 310, 286–302 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. F.J. Gould, J.W. Tolle, A necessary and sufficient qualification for constrained optimization. SIAM J. Appl. Math. 20, 164–172 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  13. S.M. Guu, Y. Singh, S.K. Mishra, On strong KKT type sufficient optimality conditions for multiobjective semi-infinite programming problems with vanishing constraints. J. Inequal. Appl. 2017(1), 1–9 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Hoheisel, C. Kanzow, Wrzburg: first and second order optimality conditions for mathematical programs with vanishing constraints. Appl. Math. 52(6), 495–514 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Hoheisel, C. Kanzow, Stationary conditions for mathematical programs with vanishing constraints using weak constraint qualifications. J. Math. Anal. Appl. 337, 292–310 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Hoheisel, C. Kanzow, On the Abadie and Guignard constraint qualifications for mathematical programmes with vanishing constraints. Optimization 58(4), 431–448 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Hoheisel, C. Kanzow, J.V. Outrata, Exact penalty results for mathematical programs with vanishing constraints. Nonlinear Anal. 72, 2514–2526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Q. Hu, J. Wang, Y. Chen, New dualities for mathematical programs with vanishing constraints. Ann. Oper. Res. 287(1), 233–255 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. A.F. Izmailov, A.L. Pogosyan, Optimality conditions and Newton-type methods for mathematical programs with vanishing constraints. Comput. Math. Math. Phys. 49, 1128–1140 (2009)

    Article  MathSciNet  Google Scholar 

  20. A.F. Izmailov, A.L. Pogosyan, Active-set Newton methods for Mathematical programs with vanishing constraints. Comput. Optim. Appl. (2012). https://doi.org/10.1007/s10589-012-9467-x

  21. A.F. Izmailov, M.V. Solodov, Mathematical programs with vanishing constraints: optimality conditions, sensitivity, and a relaxation method. J. Optim. Theory Appl. 142, 501–532 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Jayswal, V. Singh, The characterization of efficiency and saddle point criteria for multiobjective optimization problem with vanishing constraints. Acta Math. Sci. 39(2), 382–394 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Jourani, Constraint qualifications and Lagrange multipliers in nondifferentiable programming problems. J. Optim. Theory Appl. 83(3), 533–548 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. N. Kanzi, D. Barilla, G. Caristi, Qualifications and stationary conditions for nonsmooth multiobjective mathematical programming problem with vanishing constraints. Numer. Comput. Theory Algor. NUMTA 2019, 138 (2019)

    Google Scholar 

  25. S. Kazemi, N. Kanzi, Constraint qualifications and stationary conditions for mathematical programming with non-differentiable vanishing constraints. J. Optim. Theory Appl. 179(3), 800–819 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Kazemi, N. Kanzi, A. Ebadian, Estimating the frechet normal cone in optimization problems with nonsmooth vanishing constraints. Iran J. Sci. Technol. A 43(5), 2299–2306 (2019)

    Article  MathSciNet  Google Scholar 

  27. A. Khare, T. Nath, Enhanced Fritz John stationarity, new constraint qualifications and local error bound for mathematical programs with vanishing constraints. J. Math. Anal. Appl. 472(1), 1042–1077 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. L. Kuntz, S. Scholtes, A nonsmooth variant of the Mangasarian-Fromovitz constraint qualification. J. Optim. Theory Appl. 82(1), 59–75 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. X.F. Li, Z. Zhang, Necessary optimality conditions in terms of convexifactors in Lipschitz optimization. J. Optim. Theory Appl. 131(3), 429–452 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Z.-Q. Luo, J.-S. Pang, D. Ralph, Mathematical Programs with Equilibrium Constraints (Cambridge University Press, Cambridge, 1996)

    Book  MATH  Google Scholar 

  31. O.L. Mangasarian, Nonlinear Programming (McGraw–Hill, New York, 1969)

    MATH  Google Scholar 

  32. P. Michel, J.-P. Penot, Calcul sous-differentiel pour des fonctions lipschitziennes et nonlipschitziennes. C. R. Acad. Sci. Paris Ser. I Math. 12, 269–272 (1984)

    MATH  Google Scholar 

  33. P. Michel, J.-P. Penot, A generalized derivative for calm and stable functions. Differ. Integ. Equ. 5, 433–454 (1992)

    MathSciNet  MATH  Google Scholar 

  34. S.K. Mishra, V. Singh, V. Laha, R.N. Mohapatra, On constraint qualifications for multiobjective optimization problems with vanishing constraints, in Optimization Methods, Theory and Applications (Springer, Berlin, 2015), pp. 95–135

    MATH  Google Scholar 

  35. S.K. Mishra, V. Singh, V. Laha, On duality for mathematical programs with vanishing constraints. Ann. Oper. Res. 243(1–2), 249–272 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. H. Mokhtavayi, A. Heidari, N. Kanzi, Necessary and sufficient conditions for M-stationarity of nonsmooth optimization. Comp. Meth. Part. D. E. (2020) https://doi.org/10.22034/cmde.2020.30733.1459

  37. B.S. Mordukhowich, Necessary conditions in nonsmooth minimization via lower and upper subgradients. Set-Valued Anal. 12, 163–193 (2004)

    Article  MathSciNet  Google Scholar 

  38. B.S. Mordukhovich, Variational Analysis and Generalized Differentiation, II: Applications. Grundlehren Series (Fundamental Principles of Mathematical Sciences), vol. 331 (Springer, Berlin, 2006)

    Google Scholar 

  39. N. Movahedian, S. Nobakhtian, Nondifferentiable multiplier rules for optimization problems with equilibrium constraints. J. Convex Anal. 16(1), 187–210 (2009)

    MathSciNet  MATH  Google Scholar 

  40. N. Movahedian, S. Nobakhtian, Necessary and sufficient conditions for nonsmooth mathematical programs with equilibrium constraints. Nonlinear Anal. 72, 2694–2705 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Nocedal, S.J. Wright, Numerical Optimization (Springer, Berlin, 1999)

    Book  MATH  Google Scholar 

  42. J.V. Outrata, A generalized mathematical program with equilibrium constraints. SIAM J. Control Optim. 38, 1623–1638 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. J.V. Outrarata, M. Kovara, J. Zowe, Nonsmooth Approach to Optimization Problems with Equilibrium Constraints (Kluwer Academic Publishers, Dordrecht, 1998)

    Book  Google Scholar 

  44. D.W. Peterson, A review of constraint qualifications in finite-dimensional spaces. SIAM Rev. 15, 639–654 (1973)

    Article  MathSciNet  Google Scholar 

  45. R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970)

    Book  MATH  Google Scholar 

  46. W. Schirotzek, Nonsmooth Analysis (Springer, Berlin, 2007)

    Book  MATH  Google Scholar 

  47. O. Stein, On constraint qualifications in nonsmooth optimization. J. Optim. Theory Appl. 121(3), 647–671 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. J.J. Ye, Multiplier rules under mixed assumptions of differentiability and Lipschitz continuity. SIAM J. Control Optim. 39, 1441–1460 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. J.J. Ye, Nondifferentiable multiplier rules for optimization and bilevel optimization problems. SIAM J. Optim. 15, 252–274 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of Dr. Vivek Laha is supported by UGC-BSR start up grant by University Grant Commission, New Delhi, India (Letter No. F.30-370/2017(BSR)) (Project No. M-14-40). The research of Dr. Vinay Singh is supported by the Science and Engineering Research Board, a statutory body of the Department of Science and Technology (DST), Government of India, through project reference no. EMR/2016/002756. The research of Prof. S.K. Mishra is financially supported by Department of Science and Technology, SERB, New Delhi, India through grant no.: MTR/2018/000121.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laha, V., Singh, V., Pandey, Y., Mishra, S.K. (2022). Nonsmooth Mathematical Programs with Vanishing Constraints in Banach Spaces. In: Nikeghbali, A., Pardalos, P.M., Raigorodskii, A.M., Rassias, M.T. (eds) High-Dimensional Optimization and Probability. Springer Optimization and Its Applications, vol 191. Springer, Cham. https://doi.org/10.1007/978-3-031-00832-0_13

Download citation

Publish with us

Policies and ethics