Skip to main content

A Modified Whale Optimization Algorithm as Filter-Based Feature Selection for High Dimensional Datasets

  • 62 Accesses

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 457)

Abstract

Convergence speed is a common issue in most meta-heuristic algorithms including Whale Optimization Algorithm (WOA). In WOA, the control parameter, \(a\), that decreases linearly could affect its convergence speed which resulted in low performance in finding better solutions for feature selection. Thus, a modified WOA (mWOA) is proposed by linearly increasing the control parameter value to solve the issue. mWOA is implemented as a filter-based feature selection method on 4 benchmark high-dimensional datasets (HDD). The performance of the selected features by mWOA was evaluated and compared against original WOA and without feature selection (No FS) using Naïve Bayes, C4.5, K-Nearest Neighbors, and Support Vector Machine classifiers. The features selected by mWOA produced promising classification accuracy as compared to WOA and No FS in 11 out of 20 test cases. Interestingly, mWOA managed to achieve the highest classification accuracy with 90.75% in the dataset that has the largest features. In the future, further improvement of mWOA is vital to overcome the convergence speed issue and decrease the computational time in HDD.

Keywords

  • Whale optimization algorithm
  • Convergence
  • Feature selection
  • Filter-based
  • High-dimensional dataset

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-00828-3_9
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-00828-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Feature Selection for High-Dimensional Data. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-21858-8

  2. Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., Lang, M.: Benchmark for filter methods for feature selection in high-dimensional classification data. Comput. Stat. Data Anal. 143, 106839 (2020). https://doi.org/10.1016/j.csda.2019.106839

    MathSciNet  CrossRef  MATH  Google Scholar 

  3. Hu, L., Gao, W., Zhao, K., Zhang, P., Wang, F.: Feature selection considering two types of feature relevancy and feature interdependency. Expert Syst. Appl. 93, 423–434 (2018). https://doi.org/10.1016/j.eswa.2017.10.016

    CrossRef  Google Scholar 

  4. Nematzadeh, H., Enayatifar, R., Mahmud, M., Akbari, E.: Frequency based feature selection method using whale algorithm. Genomics 111(6), 1946–1955 (2019). https://doi.org/10.1016/j.ygeno.2019.01.006

    CrossRef  Google Scholar 

  5. Chen, G., Liu, L., Huang, S.: Enhanced GSA-based optimization for minimization of power losses in power system. Math. Probl. Eng. 2015, 1–13 (2015). https://doi.org/10.1155/2015/527128

    CrossRef  Google Scholar 

  6. Li, X., Luk, K.M.: The Grey Wolf optimizer and its applications in electromagnetics. IEEE Trans. Antennas Propag. 68(3), 2186–2197 (2020). https://doi.org/10.1109/TAP.2019.2938703

    CrossRef  Google Scholar 

  7. Gao, W.: Improved ant colony clustering algorithm and its performance study. Comput. Intell. Neurosci. 2016, 1–14 (2016). https://doi.org/10.1155/2016/4835932

    CrossRef  Google Scholar 

  8. Assiri, A.S., Hussien, A.G., Amin, M.: Ant lion optimization: variants, hybrids, and applications. IEEE Access 8, 77746–77764 (2020). https://doi.org/10.1109/ACCESS.2020.2990338

    CrossRef  Google Scholar 

  9. Mafarja, M.M., Mirjalili, S.: Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing 260, 302–312 (2017). https://doi.org/10.1016/j.neucom.2017.04.053

    CrossRef  Google Scholar 

  10. Mafarja, M., Mirjalili, S.: Whale optimization approaches for wrapper feature selection. Appl. Soft Comput. 62, 441–453 (2018). https://doi.org/10.1016/j.asoc.2017.11.006

    CrossRef  Google Scholar 

  11. Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015). https://doi.org/10.1016/j.advengsoft.2015.01.010

    CrossRef  Google Scholar 

  12. Kennedy, J., Eberhart, R.: Particle Swarm Optimization, pp. 1942–1948. ISTE, London (2010). https://doi.org/10.1002/9780470612163

  13. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016). https://doi.org/10.1016/j.advengsoft.2016.01.008

    CrossRef  Google Scholar 

  14. Gharehchopogh, F.S., Gholizadeh, H.: A comprehensive survey: whale optimization algorithm and its applications. Swarm Evol. Comput. 48(2018), 1–24 (2019). https://doi.org/10.1016/j.swevo.2019.03.004

    CrossRef  Google Scholar 

  15. Zhang, Y., Song, X.-F., Gong, D.-W.: A return-cost-based binary firefly algorithm for feature selection. Inf. Sci. 418–419, 561–574 (2017). https://doi.org/10.1016/j.ins.2017.08.047

    CrossRef  Google Scholar 

  16. Mohammed, H.M., Umar, S.U., Rashid, T.A.: A systematic and meta-analysis survey of whale optimization algorithm. arXiv, vol. 2019 (2019)

    Google Scholar 

  17. Niu, P., Niu, S., Liu, N., Chang, L.: The defect of the Grey Wolf optimization algorithm and its verification method. Knowl. Based Syst. 171, 37–43 (2019). https://doi.org/10.1016/j.knosys.2019.01.018

    CrossRef  Google Scholar 

  18. Zhong, M., Long, W.: Whale optimization algorithm with nonlinear control parameter. MATEC Web Conf. 139, 1–5 (2017). https://doi.org/10.1051/matecconf/201713900157

    CrossRef  Google Scholar 

  19. Saidala, R.K., Devarakonda, N.: Improved whale optimization algorithm case study: clinical data of anaemic pregnant woman. In: Satapathy, S.C., Bhateja, V., Raju, K.S., Janakiramaiah, B. (eds.) Data Engineering and Intelligent Computing. AISC, vol. 542, pp. 271–281. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-3223-3_25

    CrossRef  Google Scholar 

  20. Pecora, L.M., Carroll, T.L.: Synchronization of chaotic systems. Chaos 25(9), 097611 (2015). https://doi.org/10.1063/1.4917383

    MathSciNet  CrossRef  MATH  Google Scholar 

  21. Abdel-Basset, M., Manogaran, G., El-Shahat, D., Mirjalili, S.: A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem. Future Gener. Comput. Syst. 85, 129–145 (2021). https://doi.org/10.1016/j.future.2018.03.020

    CrossRef  Google Scholar 

  22. Hu, P., Pan, J.S., Chu, S.C.: Improved binary Grey Wolf optimizer and its application for feature selection. Knowl. Based Syst. 195, 105746 (2020). https://doi.org/10.1016/j.knosys.2020.105746

    CrossRef  Google Scholar 

  23. The University of Waikato: “Weka”, waikato.github.io (2014). https://waikato.github.io/weka-wiki/. Accessed 24 June 24 2021

  24. Yan, C., Ma, J., Luo, H., Patel, A.: Hybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasets. Chemom. Intell. Lab. Syst. 184(2018), 102–111 (2019). https://doi.org/10.1016/j.chemolab.2018.11.010

    CrossRef  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Higher Education (MOHE) through Fundamental Research Grant Scheme (FRGS) (FRGS/1/2018/ICT02/UTHM/02/6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noorhaniza Wahid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Yab, L.Y., Wahid, N., Hamid, R.A. (2022). A Modified Whale Optimization Algorithm as Filter-Based Feature Selection for High Dimensional Datasets. In: Ghazali, R., Mohd Nawi, N., Deris, M.M., Abawajy, J.H., Arbaiy, N. (eds) Recent Advances in Soft Computing and Data Mining. SCDM 2022. Lecture Notes in Networks and Systems, vol 457. Springer, Cham. https://doi.org/10.1007/978-3-031-00828-3_9

Download citation