Haixia, X.U., Zheng, T.: An optimal spectral clustering approach based on Cauchy-Schwarz divergence. Chin. J. Electron. 18(1), 105–108 (2009)
Google Scholar
Von Luxburg, U., Williamson, R.C., Guyon, I.: Clustering: science or art? J. Mach. Learn. Res. Proc. Track 27, 65–80 (2012)
Google Scholar
Leopold, N., Rose, O.: UNIC: a fast nonparametric clustering. Pattern Recognit. 100, 107117 (2020)
Google Scholar
Nooraeni, R., Arsa, M.I., Kusumo Projo, N.W.: Fuzzy centroid and genetic algorithms: solutions for numeric and categorical mixed data clustering. Procedia Comput. Sci. 179(2020), 677–684 (2021)
Google Scholar
Golzari Oskouei, A., Balafar, M.A., Motamed, C.: FKMAWCW: categorical fuzzy k-modes clustering with automated attribute-weight and cluster-weight learning. Chaos Solitons Fractals 153, 111494 (2021)
Google Scholar
Kuo, R.J., Zheng, Y.R., Nguyen, T.P.Q.: Metaheuristic-based possibilistic fuzzy k-modes algorithms for categorical data clustering. Inf. Sci. (Ny) 557, 1–15 (2021)
MathSciNet
CrossRef
Google Scholar
Hennig, C.: What are the true clusters? Pattern Recognit. Lett. 64, 53–62 (2015)
CrossRef
Google Scholar
Li, J., Ray, S., Lindsay, B.G.: A nonparametric statistical approach to clustering via mode identification. J. Mach. Learn. Res. 8, 1687–1723 (2007)
MathSciNet
MATH
Google Scholar
Ramos Emmendorfer, L., de Paula Canuto, A.M.: A generalized average linkage criterion for hierarchical agglomerative clustering. Appl. Soft Comput. 100, 106990 (2021)
Google Scholar
Bi, X., Luo, X., Sun, Q.: Branch tire packet classification algorithm based on single-linkage clustering. Math. Comput. Simul. 155, 78–91 (2019)
MathSciNet
CrossRef
Google Scholar
Schmidt, M., Kutzner, A., Heese, K.: A novel specialized single-linkage clustering algorithm for taxonomically ordered data. J. Theor. Biol. 427, 1–7 (2017)
CrossRef
Google Scholar
Xiong, Y., et al.: A spectra partition algorithm based on spectral clustering for interval variable selection. Infrared Phys. Technol. 105, 103259 (2020)
Google Scholar
Nguyen, T.P.Q., Kuo, R.J.: Partition-and-merge based fuzzy genetic clustering algorithm for categorical data. Appl. Soft Comput. J. 75, 254–264 (2019)
Google Scholar
Sinharay, S.: Discrete probability distributions. Int. Encycl. Educ., 132–134 (2010). https://doi.org/10.1016/B978-0-08-044894-7.01721-8
Herawan, T., Deris, M.M.: On multi-soft sets construction in information systems. In: Huang, DS., Jo, KH., Lee, HH., Kang, HJ., Bevilacqua, V. (eds.) ICIC 2009. LNCS, vol. 5755. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04020-7_12
Malefaki, S., Iliopoulos, G.: Simulating from a multinomial distribution with large number of categories. Comput. Stat. Data Anal. 51(12), 5471–5476 (2007)
MathSciNet
CrossRef
Google Scholar
Molodtsov, D.: Soft set theory—first results. Comput. Math. with Appl. 37(4–5), 19–31 (1999)
MathSciNet
CrossRef
Google Scholar
Maji, P.K., Biswas, R., Roy, A.R.: Soft set theory. Comput. Math. with Appl. 45(4–5), 555–562 (2003)
MathSciNet
CrossRef
Google Scholar
Yang, M.S., Chiang, Y.H., Chen, C.C., Lai, C.Y.: A fuzzy k-partitions model for categorical data and its comparison to the GoM model. Fuzzy Sets Syst. 159(4), 390–405 (2008)
MathSciNet
CrossRef
Google Scholar
Dheeru, D., Karra Taniskidou, E.: UCI Machine Learning Repository (2017)
Google Scholar