Chyzhmar, K., Dniprov, O., Korotiuk, O., Shapoval, R., Sydorenko, O.: State information security as a challenge of information and computer technology development. J. Secur. Sustain. Issues 9(3) (2020)
Google Scholar
Votinova, E., Votinov, M.: Information society: analyzing problems and prospects of using information technologies, computers and communication networks. Webology 16(1) (2019)
Google Scholar
Tomasov, A., Holik, M., Oujezsky, V., Horvath, T., Munster, P.: GPON PLOAMd message analysis using supervised neural networks. Appl. Sci. (Switz.) 10(22), 8139 (2020)
CrossRef
Google Scholar
E-commerce-businnes-technology-society. Int. J. Eng. Technol. Manag. Res. 4(10) (2020)
Google Scholar
Gupta, A., Srivastava, A., Bohara, V.: Resource allocation in solar-powered FiWi networks. IEEE Access 8, 198691–198705 (2020)
CrossRef
Google Scholar
Furda, A., Fidge, C., Barros, A.: A practical approach for detecting multi-tenancy data interference. Sci. Comput. Program. 163, 160–173 (2018)
CrossRef
Google Scholar
Ain, K., Hidayati, H., Aulia Nastiti, O.: Expert system for stroke classification using naive bayes classifier and certainty factor as diagnosis supporting device. J. Phys.: Conf. Ser. 1–7 (2020)
Google Scholar
Putri, N., Apriono, C., Natali, Y.: Increasing residential capacity in gigabit-capable passive optical network using high splitting ratio. In: 2020 3rd International Conference on Information and Communications Technology, ICOIACT 2020 (2020)
Google Scholar
Amaya, L., et al.: Implementation of the pineaplle tetra module for an audit process through impersonation of aps in the 2.4 and 5 GHz band in the telecommunications laboratory of the electronics and telecommunications career. RISTI – Rev. Iberica Sist. Tecnol. Inform. 2020(E27) (2020)
Google Scholar
Rusek, J.: The point nuisance method as a decision-support system based on Bayesian inference approach. Arch. Min. Sci. 65(1) (2020)
Google Scholar
Oztemel, E., Gursev, S.: Literature review of Industry 4.0 and related technologies. J. Intell. Manuf. 31(1), 127–182 (2020)
CrossRef
Google Scholar
Dehkordi, J., Tralli, V.: Interference analysis for optical wireless communications in network-on-chip (NoC) Scenarios. IEEE Trans. Commun. 68(3), 1662–1674 (2020)
CrossRef
Google Scholar
Randrianantenaina, I., Elsawy, H., Dahrouj, H., Kaneko, M., Alouini, M.: Uplink power control and ergodic rate characterization in FD cellular networks: A stochastic geometry approach. IEEE Trans. Wirel. Commun. 18(4), 2093–2110 (2019)
CrossRef
Google Scholar
Safari, M., Haas, H., Kazemi, H.: A wireless optical backhaul solution for optical attocell networks. IEEE Trans. Wirel. Commun. 18(2), 807–823 (2019)
CrossRef
Google Scholar
Mane, N., Verma, A., Arya, A.: A pragmatic optimal approach for detection of cyber attacks using genetic programming. In: 20th IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2020 – Proceedings (2020)
Google Scholar
Zschech, P., Horn, R., Höschele, D., Janiesch, C., Heinrich, K.: Intelligent user assistance for automated data mining method selection. Bus. Inf. Syst. Eng. 62(3), 227–247 (2020)
CrossRef
Google Scholar
Svec, P., Benko, L., Kadlecik, M., Kratochvil, J., Munk, M.: Web usage mining: data pre-processing impact on found knowledge in predictive modelling. Proc. Comput. Sci. 171, 168–178 (2020)
CrossRef
Google Scholar
Guan, X., Fan, Y., Qin, Q., Deng, K., Yang, G.: Construction of science and technology achievement transfer and transformation platform based on deep learning and data mining technology. J. Intell. Fuzzy Syst. 39(2), 1843–1854 (2020)
CrossRef
Google Scholar
Wang, A., Gao, X.: Multi-tasks discovery method based on the concept network for data mining. IEEE Access 7, 139537–139547 (2019)
CrossRef
Google Scholar
Maus, V., et al.: A global-scale data set of mining areas. Sci. Data 7(1), 1–13 (2020)
CrossRef
Google Scholar
Holik, M., Horvath, T., Oujezsky, V.: Application for GPON frame analysis. Electron. (Switz.) 8(6), 700 (2019)
CrossRef
Google Scholar
Hassan, W., Idrus, S., King, H., Ahmed, S., Faulkner, M.: Idle sense with transmission priority in fibre-wireless networks. IET Commun. 14(9), 1428–1437 (2020)
CrossRef
Google Scholar
Thangappan, T., Therese, B., Suvarnamma, A., Swapna, G.: Review on dynamic bandwidth allocation of GPON and EPON. J. Electron. Sci. Technol. 18(4), 100044 (2020)
CrossRef
Google Scholar
Huang, D., Zhang, Y., Lin, H., Zou, L., Liu, Z.: Rule inference network model for classification. Ruan Jian Xue Bao/J. Softw. 31(4) (2020)
Google Scholar
Ehrhardt, A., et al.: Maintenance and deployment of fibre infrastructure in the access domain for FTTH networks. Photonische Netze - 13. ITG-Fachtagung (2020)
Google Scholar
Castellano, J., Moral-García, S., Mantas, C., Abellán, J.: On the use of m-probability-estimation and imprecise probabilities in the naïve bayes classifier. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 28(4), 661-682 (2020)
Google Scholar
Rezaeian, N., Novikova, G.: Persian text classification using naive bayes algorithms and support vector machine algorithm. Indon. J. Electr. Eng. Inform. 8(1), 178–188 (2020)
Google Scholar
Tuomo, A., Suutala, J., Röning, J., Koskimäki, H.: Better classifier calibration for small datasets. ACM Trans. Knowl. Discov. Data 14(3), 1–19 (2020)
CrossRef
Google Scholar
Mahanama, B., Mendis, W., Jayasooriya, A., Malaka, V., Thayasivam, U., Umashanger, T.: Educational data mining: a review on data collection process. In: 18th International Conference on Advances in ICT for Emerging Regions, ICTer 2018 – Proceedings (2019)
Google Scholar
El Mohadab, M., Bouikhalene, B., Safi, S.: Automatic CV processing for scientific research using data mining algorithm. J. King Saud Univ. – Comput. Inf. Sci. 32(5), 561–567 (2020)
Google Scholar