Skip to main content

Prediction of ADHD from a Small Dataset Using an Adaptive EEG Theta/Beta Ratio and PCA Feature Extraction

  • 71 Accesses

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 457)

Abstract

EEG Theta/beta ratio (TBR) is conventionally used as a biomarker in childhood Attention-Deficit/Hyperactivity Disorder (ADHD) prediction and treatment. Due to the heterogeneity of ADHD symptoms, several studies have applied machine learning algorithms for enhancing the recognition of ADHD. These methods, however, have limited performance in a small dataset. In this paper, we propose an adaptive EEG feature extraction approach using TBR and PCA. Repeated TBR-PCA feature extraction, SVM classification and statistical testing were applied on a small EEG sample with ADHD/typically developing (TD) labels. The steps were repeated with an update of the feature extraction technique until a high accuracy is achieved, allowing the small samples to be correctly identified (r = 0.833, one-sided, Bonferroni-corrected p < 0.0166). Within subjects EEG samples analyses performed better compared to between subject analyses, with accuracy getting worse with the increase of EEG segments. The contribution of this work is two-fold: the practical application allows for a reliable adoption of machine learning in non-invasive EEG screening of small ADHD dataset, while the theoretical contribution extends beyond the eyes closed resting state condition considered in this study and provides a methodological approach when working with limited samples.

Keywords

  • Learning disability
  • Principal components
  • Small data
  • Adaptive learning

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-00828-3_10
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-00828-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Arlington, VA, 5th edn (2013)

    Google Scholar 

  2. World Health Organization: The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines. World Health Organization, Geneva (1992)

    Google Scholar 

  3. FDA. FDA permits marketing of the first brainwave test to help assess children and teens for ADHD. FDA News Release (2013)

    Google Scholar 

  4. Arns, M., Conners, C.K., Kraemer, H.C.: A decade of EEG theta/beta ratio research in ADHD: a meta-analysis. J Atten Disord 17, 374–383 (2013)

    CrossRef  Google Scholar 

  5. Bioulac, S., Purper-Ouakil, D., Ros, T., et al.: Personalized at-home neurofeedback compared with long-acting methylphenidate in an european non-inferiority randomized trial in children with ADHD. BMC Psychiatry 19, 1–13 (2019)

    CrossRef  Google Scholar 

  6. Luo, Y., Weibman, D., Halperin, J.M., Li, X.: A review of heterogeneity in attention deficit/hyperactivity disorder (ADHD). Front. Hum. Neurosci. 13, 42 (2019). https://doi.org/10.3389/fnhum.2019.00042

    CrossRef  Google Scholar 

  7. Arns, M., Loo, S.K., Sterman, M.B., et al.: Editorial Perspective: how should child psychologists and psychiatrists interpret FDA device approval? Caveat emptor. J. Child Psychol. Psychiatry 57, 656–658 (2016)

    CrossRef  Google Scholar 

  8. Bussalb, A., Collin, S., Barthélemy, Q., et al.: Is there a cluster of high theta-beta ratio patients in attention deficit hyperactivity disorder? Clin. Neurophysiol. 130, 1387–1396 (2019)

    CrossRef  Google Scholar 

  9. Kerson, C., deBeus, R., Lightstone, H., et al.: EEG Theta/Beta ratio calculations differ between various EEG neurofeedback and assessment software packages: clinical interpretation. Clin. EEG Neurosci. 51, 114–120 (2020)

    CrossRef  Google Scholar 

  10. Sangal, R.B., Sangal, J.M.: Use of EEG beta-1 power and theta/beta ratio over Broca’s area to confirm diagnosis of attention deficit/hyperactivity disorder in children. Clin. EEG Neurosci. 46, 177–182 (2015)

    CrossRef  Google Scholar 

  11. Kiiski, H., Bennett, M., Rueda-Delgado, L.M., et al.: EEG spectral power, but not theta/beta ratio, is a neuromarker for adult ADHD. Eur. J. Neurosci. 51, 2095–2109 (2020)

    CrossRef  Google Scholar 

  12. Chen, H., Chen, W., Song, Y., et al.: EEG characteristics of children with attention-deficit/hyperactivity disorder. Neuroscience 406, 444–456 (2019)

    CrossRef  Google Scholar 

  13. Shaikhina, T., Khovanova, N.A.: Handling limited datasets with neural networks in medical applications: a small-data approach. Artif. Intell. Med. 75, 51–63 (2017)

    CrossRef  Google Scholar 

  14. Vabalas, A., Gowen, E., Poliakoff, E., Casson, A.J.: Machine learning algorithm validation with a limited sample size. PLoS One 14, e0224365 (2019)

    CrossRef  Google Scholar 

  15. Yu, Z., Li, L., Zhang, W., Lv, H., Liu, Y., Khalique, U.: An adaptive EEG feature extraction method based on stacked denoising autoencoder for mental fatigue connectivity. Neural Plasticity 2021, 1–12 (2021)

    Google Scholar 

  16. Rasheed, T., Lee, Y.-K., Lee, S.Y., Kim, T.-S.: Attenuation of artifacts in EEG signals measured inside an MRI scanner using constrained independent component analysis. Physiol. Meas. 30, 387–404 (2009). https://doi.org/10.1088/0967-3334/30/4/004

    CrossRef  Google Scholar 

  17. Alickovic, E., Subasi, A.: Ensemble SVM method for automatic sleep stage classification. IEEE Trans. Instrum. Meas. 67, 1258–1265 (2018)

    CrossRef  Google Scholar 

  18. Sadiq, M.T., Yu, X., Yuan, Z., et al.: A matrix determinant feature extraction approach for decoding motor and mental imagery EEG in subject specific tasks. IEEE Trans. Cogn. Dev. Syst. 8920, 1–12 (2020). https://doi.org/10.1109/TCDS.2020.3040438

    CrossRef  Google Scholar 

  19. Hurtik, P., Molek, V., Perfiljeva, I.: Novel dimensionality reduction approach for unsupervised learning on small datasets. Pattern. Recognit. 103, 107291 (2020)

    CrossRef  Google Scholar 

  20. Haider, S.K., Jiang, A., Jamshed, M.A., et al.: Performance enhancement in P300 ERP single trial by machine learning adaptive denoising mechanism. IEEE Netw. Lett. 1–4 (2020)

    Google Scholar 

  21. Othman, M., Hisham, S., Razi, N.I.M., Rahman, A., Wahab, A.: EEG dataset of children with learning disabilities (LD). Mendeley Data (2021). https://doi.org/10.17632/7j7n2r2zcm.1

  22. Razi, N.I.M., Rahman, A.W.A., Kamarudin, N.: Detecting learning disabilities based on neuro-physiological interface of affect (NPIoA). Indones. J. Electr. Eng. Comput. Sci. 19, 163–170 (2020). https://doi.org/10.11591/ijeecs.v19.i1.pp163-170

  23. Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.M.: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011 (2011). https://doi.org/10.1155/2011/156869

  24. Laport, F., Iglesia, D., Dapena, A., et al.: Proposals and comparisons from one-sensor EEG and EOG human-machine interfaces. Sensors 21, 2220 (2021)

    CrossRef  Google Scholar 

  25. Johnstone, I.M., Paul, D.: PCA in high dimensions: an orientation. Proc IEEE 106, 1277–1292 (2018)

    CrossRef  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Higher Education for providing financial support through the Fundamental Research Grant Scheme (FRGS14-130-0371).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marini Othman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Sase, T., Othman, M. (2022). Prediction of ADHD from a Small Dataset Using an Adaptive EEG Theta/Beta Ratio and PCA Feature Extraction. In: Ghazali, R., Mohd Nawi, N., Deris, M.M., Abawajy, J.H., Arbaiy, N. (eds) Recent Advances in Soft Computing and Data Mining. SCDM 2022. Lecture Notes in Networks and Systems, vol 457. Springer, Cham. https://doi.org/10.1007/978-3-031-00828-3_10

Download citation