Abstract
Amphiphilic molecules, are composed of hydrophobic and hydrophilic parts and the intrinsic tendence to assemble in aqueous conditions, producing numerous supramolecular assembled structures and functional systems. Some of the recent challenges in the design of adaptive, responsive, far-from-equilibrium functional systems in aqueous environments, the proper design of photo-controlled moieties in intrinsic charged amphiphilic molecular structures offers fruitful opportunities to create supramolecular assembly systems, based on electrostatic interaction, with response to light in aqueous environment. In this chapter, we discuss the design strategy of photo-controlled molecular amphiphiles, the supramolecular assembled structures in aqueous environment and at air–water interfaces, as well as different strategies for producing dynamic functions in both isotropic and anisotropic supramolecular assembled materials. The motions at air–water interface, foam formation, reversible supramolecular assembly at nanometer length-scale, and life-like artificial muscle function are discussed. Manipulating the molecular structural design, supramolecular assembling conditions, and external stimulation, the photo-controlled molecular amphiphiles open directions toward applications ranging from controlled bio-target delivery to soft robotic.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Vittorio Degiorgio P, Corti M (1985) Amphiphiles: micelles, vesicles and microemulsions. North-Holland Publishing Group, Amsterdam
Domb C, Lebowitz JL, Gompper G, Schick M (1994) Self-assembling amphiphilic systems, phase transitions and critical phenemena. Academic Press, London
Lombardo D, Kiselev MA, Magazù S, Calandra P (2015) Amphiphiles self-assembly: basic concepts and future perspectives of supramolecular approaches. Adv Condens Matter Phys 2015:1–22
Vittorio Degiorgio P (1985) Physics of amphiphiles, micelles and microemulsions. Europhys News 16:9–12
Sorrenti A, Illa O, Ortuño RM (2013) Amphiphiles in aqueous solution: well beyond a soap bubble. Chem Soc Rev 42:8200–8219
Song S, Dong R, Wang D et al (2013) Temperature regulated supramolecular structures via modifying the balance of multiple non-covalent interactions. Soft Matter 9:4209–4218
Li D, Yin P, Liu T (2012) Supramolecular architectures assembled from amphiphilic hybrid polyoxometalates. Dalt Trans 41:2853–2861
Dolbecq A, Dumas E, Mayer CR, Mialane P (2010) Hybrid organic-inorganic polyoxometalate compounds: from structural diversity to applications. Chem Rev 110:6009–6048
Qi W, Wu L (2009) Polyoxometalate/polymer hybrid materials: fabrication and properties. Polym Int 58:1217–1225
Song A, Hao J (2009) Self-assembly of metal-ligand coordinated charged vesicles. Curr Opin Colloid Interface Sci 14:94–102
Zhang X, Wang C (2011) Supramolecular amphiphiles. Chem Soc Rev 40:94–101
Chu Z, Dreiss CA, Feng Y (2013) Smart wormlike micelles. Chem Soc Rev 42:7174–7203
Chen YL, Chen S, Frank C, Israelachvili J (1992) Molecular mechanisms and kinetics during the self-assembly of surfactant layers. J Colloid Interface Sci 153:244–265
Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2(72):1525–1568
Ringsdorf H, Schlarb B, Venzmer J (1988) Molecular architecture and function of polymeric oriented systems: models for the study of organization, surface recognition, and dynamics of biomembranes. Angew Chem Int Ed Engl 27:113–158
Aida T, Meijer EW (2020) Supramolecular polymers—we’ve come full circle. Isr J Chem 60:33–47
Mendes AC, Baran ET, Reis RL, Azevedo HS (2013) Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5:582–612
Kim HJ, Kim T, Lee M (2011) Responsive nanostructures from aqueous assembly of rigid—flexible block molecules. Acc Chem Res 44:72–82
Krieg E, Rybtchinski B (2011) Noncovalent water-based materials: robust yet adaptive. Chem A Eur J 17:9016–9026
Lim YB, Moon KS, Lee M (2009) Recent advances in functional supramolecular nanostructures assembled from bioactive building blocks. Chem Soc Rev 38:925–934
Oshovsky GV, Reinhoudt DN, Verboom W (2007) Supramolecular chemistry in water. Angew Chem Int Ed 46:2366–2393
Kato T, Mizoshita N, Kishimoto K (2005) Functional liquid-crystalline assemblies: self-organized soft materials. Angew Chem Int Ed 45:38–68
Luk YY, Abbott NL (2002) Applications of functional surfactants. Curr Opin Colloid Interface Sci 7:267–275
Bong DT, Clark TD, Granja JR, Reza Ghadiri M (2001) Self-assembling organic nanotubes. Angew Chem Int Ed 40:988–1011
Moore JS, Kraft ML (2008) Synchronized self-assembly. Science 320:620–621
Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421
Krieg E, Niazov-Elkan A, Cohen E et al (2019) Noncovalent aqua materials based on perylene diimides. Acc Chem Res 52:2634–2646
Hoffmann H (1994) Fascinating phenomena in surfactant chemistry. Adv Mater 6:116–129
Song S, Song A, Hao J (2014) Self-assembled structures of amphiphiles regulated via implanting external stimuli. RSC Adv 4:41864–41875
Wang C, Wang Z, Zhang X (2012) Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles. Acc Chem Res 45:608–618
Soc C, Sato K, Hendricks MP et al (2018) Peptide supramolecular materials for therapeutics. Chem Soc Rev 47:7539–7551
Goor OJGM, Hendrikse SIS, Dankers PYW, Meijer EW (2017) From supramolecular polymers to multi-component biomaterials. Chem Soc Rev 46:6621–6637
Krieg E, Bastings MMC, Besenius P, Rybtchinski B (2016) Supramolecular polymers in aqueous media. Chem Rev 116:2414–2477
Würthner F, Saha-Möller CR, Fimmel B et al (2016) Perylene bisimide dye assemblies as archetype functional supramolecular materials. Chem Rev 116:962–1052
Dong R, Zhou Y, Huang X et al (2015) Functional supramolecular polymers for biomedical applications. Adv Mater 27:498–526
Du X, Zhou J, Xu B (2014) Supramolecular hydrogels made of basic biological building blocks. Chem An Asian J 9:1446–1472
Ma X, Tian H (2014) Stimuli-responsive supramolecular polymers in aqueous solution. Acc Chem Res 47:1971–1981
Matile S, Jentzsch AV, Montenegro J, Fin A (2011) Recent synthetic transport systems. Chem Soc Rev 40:2453–2474
Mclntosh TJ, Simon SA (1994) Long- and short-range interactions between phospholipid/ganglioside GM1 bilayers. Biochemistry 33:10477–10486
Israelachvili JN, Marcelja S, Horn RG (1980) Physical principles of membrane organization. Q Rev Biophys 13:121–200
Wehner M, Würthner F (2020) Supramolecular polymerization through kinetic pathway control and living chain growth. Nat Rev Chem 4:38–53
Kazantsev RV, Dannenhoffer AJ, Weingarten AS et al (2017) Crystal-phase transitions and photocatalysis in supramolecular scaffolds. J Am Chem Soc 139:6120–6127
Fukui T, Kawai S, Fujinuma S et al (2017) Control over differentiation of a metastable supramolecular assembly in one and two dimensions. Nat Chem 9:493–499
Tantakitti F, Boekhoven J, Wang X et al (2016) Energy landscapes and functions of supramolecular systems. Nat Mater 15:469–476
Aliprandi A, Mauro M, De Cola L (2016) Controlling and imaging biomimetic self-assembly. Nat Chem 8:10–15
Ogi S, Sugiyasu K, Manna S et al (2014) Living supramolecular polymerization realized through a biomimetic approach. Nat Chem 6:188–195
Korevaar PA, De Greef TFA, Meijer EW (2014) Pathway complexity in π-conjugated materials. Chem Mater 26:576–586
Boekhoven J, Poolman JM, Maity C et al (2013) Catalytic control over supramolecular gel formation. Nat Chem 5:433–437
Korevaar PA, George SJ, Markvoort AJ et al (2012) Pathway complexity in supramolecular polymerization. Nature 481:492–496
Yan Q, Zhao Y (2013) CO2-stimulated diversiform deformations of polymer assemblies. J Am Chem Soc 135:16300–16303
Eastoe J, Vesperinas A (2005) Self-assembly of light-sensitive surfactants. Soft Matter 1:338–347
Polarz S, Kunkel M, Donner A, Schlötter M (2018) Added-value surfactants. Chem A Eur J 24:18842–18856
Santer S (2018) Remote control of soft nano-objects by light using azobenzene containing surfactants. J Phys D Appl Phys 51:1–17
Zhu H, Shangguan L, Shi B et al (2018) Recent progress in macrocyclic amphiphiles and macrocyclic host-based supra-amphiphiles. Mater Chem Front 2:2152–2174
Basílio N, García-Río L (2017) Photoswitchable vesicles. Curr Opin Colloid Interface Sci 32:29–38
Liu Y, Jessop PG, Cunningham M et al (2006) Switchable surfactants. Science 313(80–):958–960
Wang A, Shi W, Huang J, Yan Y (2016) Adaptive soft molecular self-assemblies. Soft Matter 12:337–357
Brown P, Alan Hatton T, Eastoe J (2015) Magnetic surfactants. Curr Opin Colloid Interface Sci 20:140–150
Frisch H, Besenius P (2014) pH-switchable self-assembled materials. Macromol Rapid Commun 36:346–363
Singh J, Ranganathan R, Angayarkanny S et al (2013) pH-responsive aggregation states of chiral polymerizable amphiphiles from l-tyrosine and l-phenyl alanine in water. Langmuir 29:5734–5741
Seki T, Lin X, Yagai S (2013) Supramolecular engineering of perylene bisimide assemblies based on complementary multiple hydrogen bonding interactions. Asian J Org Chem 2:708–724
Song A, Dong S, Jia X et al (2005) An onion phase in salt-free zero-charged catanionic surfactant solutions. Angew Chem Int Ed 44:4018–4021
Brown P, Butts CP, Eastoe J (2013) Stimuli-responsive surfactants. Soft Matter 9:2365–2374
Lloyd GO, Steed JW (2009) Anion-tuning of supramolecular gel properties. Nat Chem 1:437–442
Liu X, Abbott NL (2009) Spatial and temporal control of surfactant systems. J Colloid Interface Sci 339:1–18
George M, Weiss RG (2001) Chemically reversible organogels via “latent” gelators. Aliphatic amines with carbon dioxide. J Am Chem Soc 123:10393–10394
Hirst AR, Escuder B, Miravet JF, Smith DK (2008) High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew Chem Int Ed 47:8002–8018
Vigier-Carrière C, Boulmedais F, Schaaf P, Jierry L (2018) Surface-assisted self-assembly strategies leading to supramolecular hydrogels. Angew Chem Int Ed 57:1448–1456
Tabor RF, McCoy TM, Hu Y, Wilkinson BL (2018) Physicochemical and biological characterisation of azobenzene-containing photoswitchable surfactants. Bull Chem Soc Jpn 91:932–939
Balzani V, Credi A, Venturi M (2009) Light powered molecular machines. Chem Soc Rev 38:1542–1550
Wang L, Li Q (2018) Photochromism into nanosystems: towards lighting up the future nanoworld. Chem Soc Rev 47:1044–1097
Wang C, Chen Q, Xu H et al (2010) Photoresponsive supramolecular amphiphiles for controlled self-assembly of nanofibers and vesicles. Adv Mater 22:2553–2555
Carswell ADW, O’Rear EA, Grady BP (2003) Adsorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and polypyrrole nanostructures on flat surfaces: from spheres to wires to flat films. J Am Chem Soc 125:14793–14800
Yagai S, Kitamura A (2008) Recent advances in photoresponsive supramolecular self-assemblies. Chem Soc Rev 37:1520–1529
Ball P (2008) Water as an active constituent in cell biology. Chem Rev 108:74–108
Lsraelachvili J, Wennerstrom H (1996) Role of hydration and water structure in biological and colloidal interactions. Nature 379:219–225
Myers D (2006) Surfactant science and technology. Wiley, Hoboken
Milton R (1989) Surfactants and interfacial phenomena. Wiley, Hoboken
Kunitake T (1992) Synthetic bilayer membranes: molecular design, self-organization, and application. Angew Chem Int Ed Engl 31:709–726
Monger FM, Littau CA (1991) Gemini surfactants; synthesis and properties. J Am Chem Soc 113:1451–1452
Fuhrhop J-H, Wang T (2004) Bolaamphiphiles. Chem Rev 104:2901–2937
Meister A, Bastrop M, Koschoreck S et al (2007) Structure-property relationship in stimulus-responsive bolaamphiphile hydrogels. Langmuir 23:7715–7723
Goulet-Hanssens A, Eisenreich F, Hecht S (2020) Enlightening materials with photoswitches. Adv Mater 32:1905966
Yagai S, Karatsu T, Kitamura A (2005) Photocontrollable self-assembly. Chem A Eur J 11:4054–4063
Velázquez MM, Alejo T, López-Díaz D et al (2016) Langmuir–Blodgett methodology: a versatile technique to build 2D material films. In: Two-dimensional materials: synthesis, characterization and potential applications. InTech, pp 21–42
Rogalska E, Bilewicz R, Brigaud T et al (2000) Formation and properties of Langmuir and Gibbs monolayers: a comparative study using hydrogenated and partially fluorinated amphiphilic derivatives of mannitol. Chem Phys Lipids 105:71–91
Ariga K, Yamauchi Y, Mori T, Hill JP (2013) 25th anniversary article: what can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science. Adv Mater 25:6477–6512
Holden DA, Ringsdorf H, Deblauwe V, Smets G (1984) Photosensitive monolayers. Studies of surface-active spiropyrans at the air-water interface. J Phys Chem 88:716–720
Rossos AK, Katsiaflaka M, Cai J et al (2018) Photochromism of amphiphilic dithienylethenes as Langmuir-Schaefer films. Langmuir 34:10905–10912
Gong HF, Tang JA, Wang CM et al (2003) In situ observation of the photochromism in the Langmuir monolayer of a non-typical amphiphilic spiropyran derivative at the air/water interface. Chinese J Chem 21:387–391
Yamaguchi T, Kajikawa K, Takezoe H, Fukuda A (1992) Observation of photochromic reactions in spiropyran monolayers by surface potential measurement. Jpn J Appl Phys 31:1160–1163
Miyata A, Unuma Y, Higashigaki Y (1993) Optical properties and molecular orientation of aggregates in Langmuir-Blodgett films of A long-chain spiropyran. Bull Chem Soc Jpn 66:993–998
Tachibana H, Yamanaka Y, Matsumoto M (2002) Surface and photochemical properties of Langmuir monolayer and Langmuir-Blodgett films of a spiropyran derivative. J Mater Chem 12:938–942
Bubeck C (1988) Reactions in monolayers and Langmuir-Blodgett films. Elsevier Sequoia, The Netherlands
Ando E, Moriyama K, Arita K, Morimoto K (1990) Photochromic behaviors of long alkyl chain spiropyrans at the air-water interface and in LB films. Langmuir 6:1451–1454
Miyata A, Unuma Y, Higashigali Y (1991) Aggregates in Langmuir-Bladgett films of spiropyrans having hydroxyl or hydroxymethyl group. Bull Chem Soc Jpn 64:1719–1725
Whitten DG (1993) Photochemistry and photophysics of trans-stilbene and related alkenes in surfactant assemblies. Acc Chem Res 26:502–509
Cheng J, Štacko P, Rudolf P et al (2017) Bidirectional photomodulation of surface tension in Langmuir films. Angew Chem Int Ed 56:291–296
Backus EHG, Kuiper JM, Engberts JBFN et al (2011) Reversible optical control of monolayers on water through photoswitchable lipids. J Phys Chem B 115:2294–2302
Yamamoto T, Umemura Y, Sato O, Einaga Y (2004) Photoswitchable magnetic films: Prussian blue intercalated in Langmuir-Blodgett films consisting of an amphiphilic azobenzene and a clay mineral. Chem Mater 16:1195–1201
Nakazawa T, Azumi R, Sakai H et al (2004) Brewster angle microscopic observations of the Langmuir films of amphiphilic spiropyran during compression and under UV illumination. Langmuir 20:5439–5444
Kim I, Rabolt JF, Stroeve P (2000) Dynamic monolayer behavior of a photo-responsive azobenzene surfactant. Colloids Surf A Physicochem Eng Asp 171:167–174
Karthaus O, Shimomura M, Hioki M et al (1996) Reversible photomorphism in surface monolayers. J Am Chem Soc 118:9174–9175
Song B, Zhao J (2010) Orientation of the azobenzene spacer of carboxylic methyl ester gemini surfactants in Langmuir monolayer. Chinese J Chem 28:189–192
Kharlamov AA, Lyubimov AV, Vinogradov AM (1994) The photoinduced surface pressure relaxation processes in amphiphilic spiropyrane and spiroindolinonaphthooxazine. Thin Solid Films 244:962–965
Sakai K, Imaizumi Y, Oguchi T et al (2010) Adsorption characteristics of spiropyran-modified cationic surfactants at the silica/aqueous solution interface. Langmuir 26:9283–9288
Eastoe J, Dominguez MS, Wyatt P et al (2002) Properties of a stilbene-containing gemini photosurfactant: Light-triggered changes in surface tension and aggregation. Langmuir 18:7837–7844
Kang HC, Lee BM, Yoon J, Yoon M (2000) Synthesis and surface-active properties of new photosensitive surfactants containing the azobenzene group. J Colloid Interface Sci 231:255–264
Dunkin IR, Gittinger A, Sherrington DC, Whittaker P (1996) Synthesis, characterization and applications of azo-containing photodestructible surfactants. J Chem Soc Perkin Trans 2:1837–1842
Yang L, Takisawa N, Hayashita T, Shirahama K (1995) Colloid chemical characterization of the photosurfactant 4-ethylazobenzene 4′-(oxyethyl)trimethylammonium bromide. J Phys Chem 99:8799–8803
Hayashita T, Kurosawa T, Miyata T et al (1994) Effect of structural variation within cationic azo-surfactant upon photoresponsive function in aqueous solution. Colloid Polym Sci 272:1611–1619
Dunkin IR, Gittinger A, Sherrington DC, Whittaker P (1994) A photodestructible surfactant. J Chem Soc Chem Commun 2245–2246
Drummond CJ, Albers S, Furlong DN, Wells D (1991) Photocontrol of surface activity and self-assembly with a spirobenzopyran surfactant. Langmuir 7:2409–2411
Shinkai S, Matsuo K, Harada A, Manabe O (1982) Photocontrol of micellar catalyses. J Chem Soc Perkin Trans 1:1261–1265
Shin JY, Abbott NL (1999) Using light to control dynamic surface tensions of aqueous solutions of water soluble surfactants. Langmuir 15:4404–4410
Cicciarelli BA, Hatton TA, Smith KA (2007) Dynamic surface tension behavior in a photoresponsive surfactant system. Langmuir 23:4753–4764
Chevallier E, Mamane A, Stone HA et al (2011) Pumping-out photo-surfactants from an air-water interface using light. Soft Matter 7:7866–7874
Chevallier E, Monteux C, Lequeux F, Tribet C (2012) Photofoams: remote control of foam destabilization by exposure to light using an azobenzene surfactant. Langmuir 28:2308–2312
Chevallier E, Saint-Jalmes A, Cantat I et al (2013) Light induced flows opposing drainage in foams and thin-films using photosurfactants. Soft Matter 9:7054–7060
Mamane A, Chevallier E, Olanier L et al (2017) Optical control of surface forces and instabilities in foam films using photosurfactants. Soft Matter 13:1299–1305
Jiang J, Ma Y, Cui Z (2017) Smart foams based on dual stimuli-responsive surfactant. Colloids Surf A Physicochem Eng Asp 513:287–291
Lei L, Xie D, Song B et al (2017) Photoresponsive foams generated by a rigid surfactant derived from dehydroabietic acid. Langmuir 33:7908–7916
Chen S, Wang C, Yin Y, Chen K (2016) Synthesis of photo-responsive azobenzene molecules with different hydrophobic chain length for controlling foam stability. RSC Adv 6:60138–60144
Chen S, Zhang W, Wang C, Sun S (2016) A recycled foam coloring approach based on the reversible photo-isomerization of an azobenzene cationic surfactant. Green Chem 18:3972–3980
Chen S, Zhang Y, Chen K et al (2017) Insight into a fast-phototuning azobenzene switch for sustainably tailoring the foam stability. ASC Appl Mater Interfaces 9:13778–13784
Fei L, Ge F, Yin Y, Wang C (2019) Photo-responsive foam control base on nonionic azobenzene surfactant as stabilizer. Colloids Surf A Physicochem Eng Asp 560:366–375
Chen S, Fei L, Ge F, Wang C (2019) Photoresponsive aqueous foams with controllable stability from nonionic azobenzene surfactants in multiple-component systems. Soft Matter 15:8313–8319
Chen S, Fei L, Ge F et al (2020) A versatile and recycled pigment foam coloring approach for natural and synthetic fibers with nearly-zero pollutant discharge. J Clean Prod 243:118504
Jiang X, Guo Q, Li H et al (2017) Photofoams and flotation mechanism of an azobenzene-based surfactant on quartz. Colloids Surf A Physicochem Eng Asp 535:201–205
Jiang X, Guo Q, He Y et al (2018) Using light to control the floatability of solid particles in aqueous solution of a Gemini surfactant. Colloids Surf A Physicochem Eng Asp 553:218–224
Varanakkottu SN, Anyfantakis M, Morel M et al (2016) Light-directed particle patterning by evaporative optical Marangoni assembly. Nano Lett 16:644–650
Lv C, Varanakkottu SN, Baier T, Hardt S (2018) Controlling the trajectories of nano/micro particles using light-actuated marangoni flow. Nano Lett 18:6924–6930
Diguet A, Guillermic RM, Magome N et al (2009) Photomanipulation of a droplet by the chromocapillary effect. Angew Chem Int Ed 48:9281–9284
Baigl D (2012) Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives. Lab Chip 12:3637–3653
Kavokine N, Anyfantakis M, Morel M et al (2016) Light-driven transport of a liquid marble with and against surface flows. Angew Chem Int Ed 55:11183–11187
Vialetto J, Anyfantakis M, Rudiuk S et al (2019) Photoswitchable dissipative two-dimensional colloidal crystals. Angew Chem Int Ed 58:9145–9149
Schnurbus M, Stricker L, Ravoo BJ, Braunschweig B (2018) Smart air-water interfaces with arylazopyrazole surfactants and their role in photoresponsive aqueous foam. Langmuir 34:6028–6035
Honnigfort C, Campbell RA, Droste J et al (2020) Unexpected monolayer-to-bilayer transition of arylazopyrazole surfactants facilitates superior photo-control of fluid interfaces and colloids. Chem Sci 11:2085–2092
Sakai H, Ebana H, Sakai K et al (2007) Photo-isomerization of spiropyran-modified cationic surfactants. J Colloid Interface Sci 316:1027–1030
Moo JGS, Presolski S, Pumera M (2016) Photochromic spatiotemporal control of bubble-propelled micromotors by a spiropyran molecular switch. ACS Nano 10:3543–3552
Schnurbus M, Kabat M, Jarek E et al (2020) Spiropyran sulfonates for photo- and pH-responsive air-water interfaces and aqueous foam. Langmuir 36:6871–6879
Zhmud BV, Tiberg F, Kizling J (2000) Dynamic surface tension in concentrated solutions of CnEm surfactants: a comparison between the theory and experiment. Langmuir 16:2557–2565
Beneventi D, Carre B, Gandini A (2001) Role of surfactant structure on surface and foaming properties. Colloids Surf A Physicochem Eng Asp 189:65–73
Chen S, Chen S, Leung FKC et al (2020) Dynamic assemblies of molecular motor amphiphiles control macroscopic foam properties. J Am Chem Soc 142:10163–10172
Nagarajan R (2002) The neglected role of the surfactant tail self-assembly: the neglected role of the surfactant tail. Langmuir 18:31–38
Li J, Zhao M, Zhou H et al (2012) Photo-induced transformation of wormlike micelles to spherical micelles in aqueous solution. Soft Matter 8:7858–7864
Wang D, Wei G, Dong R, Hao J (2013) Multiresponsive viscoelastic vesicle gels of nonionic C12EO4 and anionic AzoNa. Chem A Eur J 19:8253–8260
Tabor RF, Tan DD, Han SS et al (2014) Reversible pH- and photocontrollable carbohydrate-based surfactants. Chem A Eur J 20:13881–13884
Tu Y, Chen Q, Shang Y et al (2019) Photoresponsive behavior of wormlike micelles constructed by Gemini surfactant 12-3-12·2Br– and different cinnamate derivatives. Langmuir 35:4634–4645
Fameau AL, Arnould A, Lehmann M, Von Klitzing R (2015) Photoresponsive self-assemblies based on fatty acids. Chem Commun 51:2907–2910
Jia K, Hu J, Dong J, Li X (2016) Light-responsive multillamellar vesicles in coumaric acid/alkyldimethylamine oxide binary systems: effects of surfactant and hydrotrope structures. J Colloid Interface Sci 477:156–165
Blayo C, Houston JE, King SM, Evans RC (2018) Unlocking structure-self-assembly relationships in cationic azobenzene photosurfactants. Langmuir 34:10123–10134
Shimizu T, Masuda M, Minamikawa H (2005) Supramolecular nanotube architectures based on amphiphilic molecules. Chem Rev 105:1401–1443
Chen S, Costil R, Leung FKC, Feringa BL (2021) Self-assembly of photoresponsive molecular amphiphiles in aqueous media. Angew Chem Int Ed 60:11604–11627
De JJJD, Lucas LN, Kellogg RM (2004) Supramolecular chirality into molecular chirality. Science 304:278–281
Eelkema R, Feringa BL (2006) Amplification of chirality in liquid crystals. Org Biomol Chem 4:3729–3745
de Jong JJD, van Rijn P, Tiemersma-Wegeman TD et al (2008) Dynamic chirality, chirality transfer and aggregation behaviour of dithienylethene switches. Tetrahedron 64:8324–8335
Katsonis N, Lacaze E, Feringa BL (2008) Molecular chirality at fluid/solid interfaces: expression of asymmetry in self-organised monolayers. J Mater Chem 18:2065–2073
Barclay TG, Constantopoulos K, Matisons J (2014) Nanotubes self-assembled from amphiphilic molecules via helical intermediates. Chem Rev 114:10217–10291
Vandijken DJ, Beierle JM, Stuart MCA et al (2014) Autoamplification of molecular chirality through the induction of supramolecular chirality. Angew Chem Int Ed 53:5073–5077
Liu M, Zhang L, Wang T (2015) Supramolecular chirality in self-assembled systems. Chem Rev 115:7304–7397
Muraoka T, Cui H, Stupp SI (2008) Quadruple helix formation of a photoresponsive peptide amphiphile and its light-triggered dissociation into single fibers. J Am Chem Soc 130:2946–2947
Muraoka T, Koh CY, Cui H, Stupp SI (2009) Light-triggered bioactivity in three dimensions. Angew Chem Int Ed 48:5946–5949
Paramonov SE, Jun HW, Hartgerink JD (2006) Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J Am Chem Soc 128:7291–7298
Caroli G, Coleman AC, Beierle JM et al (2011) Light-induced disassembly of self-assembled vesicle-capped nanotubes observed in real time. Nat Nanotechnol 6:547–552
Erne PM, Van Bezouwen LS, Štacko P et al (2015) Loading of vesicles into soft amphiphilic nanotubes using osmosis. Angew Chem Int Ed 54:15122–15127
Sun Y, Ji Y, Yu H et al (2016) Near-infrared light-sensitive liposomes for controlled release. RSC Adv 6:81245–81249
Wang D, Hou X, Ma B et al (2017) UV and NIR dual-responsive self-assembly systems based on a novel coumarin derivative surfactant. Soft Matter 13:6700–6708
Wang G, Engberts JBFN (1994) Induction of aggregate formation of cationic polysoaps and surfactants by low concentrations of additives in aqueous solution. Langmuir 10:2583–2587
Buwalda RT, Jonker JM, Engberts JBFN (1999) Aggregation of Azo dyes with cationic amphiphiles at low concentrations in aqueous solution. Langmuir 15:1083–1089
Buwalda RT, Engberts JBFN (2001) Aggregation of dicationic surfactants with methyl orange in aqueous solution. Langmuir 17:1054–1059
Buwalda RT, Stuart MCA, Engberts JBFN (2002) Interactions of an azobenzene-functionalized anionic amphiphile with cationic amphiphiles in aqueous solution. Langmuir 18:6507–6512
Li LS, Jiang H, Messmore BW et al (2007) A torsional strain mechanism to tune pitch in supramolecular helices. Angew Chem Int Ed 46:5873–5876
Song X, Perlstein J, Whitten DG (1997) Supramolecular aggregates of azobenzene phospholipids and related compounds in bilayer assemblies and other microheterogeneous media: structure, properties, and photoreactivity. J Am Chem Soc 119:9144–9159
Sakai H, Matsumura A, Yokoyama S et al (1999) Photochemical switching of vesicle formation using an azobenzene-modified surfactant. J Phys Chem B 103:10737–10740
Khairutdinov RF, Hurst JK (2004) Light-driven transmembrane ion transport by spiropyran-crown ether supramolecular assemblies. Langmuir 20:1781–1785
Lee CT, Smith KA, Hatton TA (2004) Photoreversible viscosity changes and gelation in mixtures of hydrophobically modified polyelectrolytes and photosensitive surfactants. Macromolecules 37:5397–5405
Bonini M, Berti D, Di Meglio JM et al (2005) Surfactant aggregates hosting a photoresponsive amphiphile: Structure and photoinduced conformational changes. Soft Matter 1:444–454
Faure D, Gravier J, Labrot T et al (2005) Photoinduced morphism of gemini surfactant aggregates. Chem Commun 16:1167–1169
Hubbard FP, Santonicola G, Kaler EW, Abbott NL (2005) Small-angle neutron scattering from mixtures of sodium dodecyl sulfate and a cationic, bolaform surfactant containing azobenzene. Langmuir 21:6131–6136
Shang T, Smith KA, Hatton TA (2006) Self-assembly of a nonionic photoresponsive surfactant under varying irradiation conditions: a small-angle neutron scattering and cryo-TEM study. Langmuir 22:1436–1442
Hubbard FP, Abbott NL (2007) Effect of light on self-assembly of aqueous mixtures of sodium dodecyl sulfate and a cationic, bolaform surfactant containing azobenzene. Langmuir 23:4819–4829
Sakai H, Orihara Y, Kodashima H et al (2005) Photoinduced reversible change of fluid viscosity. J Am Chem Soc 127:13454–13455
Alvarez-Lorenzo C, Bromberg L, Concheiro A (2009) Light-sensitive intelligent drug delivery systems. Photochem Photobiol 85:848–860
Fomina N, Sankaranarayanan J, Almutairi A (2012) Photochemical mechanisms of light-triggered release from nanocarriers. Adv Drug Deliv Rev 64:1005–1020
Liu X, Yang B, Wang Y et al (2005) New nanoscale pulsatile drug delivery system shanghai institute of organic chemistry, Chinese academy applications in drug delivery and controlled release. This is because liposomes with diameters approximately of 100 nm can be delivered to tumor tissue. Chem Mater 17:2792–2795
Lin Y, Cheng X, Qiao Y et al (2010) Creation of photo-modulated multi-state and multi-scale molecular assemblies via binary-state molecular switch. Soft Matter 6:902–908
Bi Y, Wei H, Hu Q et al (2015) Wormlike micelles with photoresponsive viscoelastic behavior formed by surface active ionic liquid/azobenzene derivative mixed solution. Langmuir 31:3789–3798
Tabor RF, Pottage MJ, Garvey CJ, Wilkinson BL (2015) Light-induced structural evolution of photoswitchable carbohydrate-based surfactant micelles. Chem Commun 51:5509–5512
Kelly EA, Houston JE, Evans RC (2019) Probing the dynamic self-assembly behaviour of photoswitchable wormlike micelles in real-time. Soft Matter 15:1253–1259
Lund R, Brun G, Chevallier E et al (2016) Kinetics of photocontrollable micelles: light-induced self-assembly and disassembly of azobenzene-based surfactants revealed by TR-SAXS. Langmuir 32:2539–2548
Song B, Hu Y, Zhao J (2009) A single-component photo-responsive fluid based on a gemini surfactant with an azobenzene spacer. J Colloid Interface Sci 333:820–822
Zhang D, Lu X, Li Y et al (2018) Dual stimuli-responsive wormlike micelles base on cationic azobenzene surfactant and sodium azophenol. Colloids Surf A Physicochem Eng Asp 543:155–162
Hirose T, Matsuda K, Irie M (2006) Self-assembly of photochromic diarylethenes with amphiphilic side chains: reversible thermal and photochemical control. J Org Chem 71:7499–7508
Van Dijken DJ, Chen J, Stuart MCA et al (2016) Amphiphilic molecular motors for responsive aggregation in water. J Am Chem Soc 138:660–669
Kwangmettatam S, Kudernac T (2018) Light-fuelled reversible expansion of spiropyran-based vesicles in water. Chem Commun 54:5311–5314
Xu F, Pfeifer L, Stuart MCA et al (2020) Multi-modal control over the assembly of a molecular motor bola-amphiphile in water. Chem Commun 56:7451–7454
Fuentes E, Gerth M, Berrocal JA et al (2020) An azobenzene-based single-component supramolecular polymer responsive to multiple stimuli in water. J Am Chem Soc 142:10069–10078
Geng S, Wang Y, Wang L et al (2017) A light-responsive self-assembly formed by a cationic Azobenzene derivative and SDS as a drug delivery system. Sci Rep 7:1–13
Simmons NS, Blout ER (1960) The structure of tobacco mosaic virus and its components: ultraviolet optical rotatory dispersion. Biophys J 1:55–62
Iino T (1974) Assembly of Salmonella Flagellin in vitro and vivo. J Supramol Struct 2:372–384
Prockop DJ, Fertala A (1998) The collagen fibril: the almost crystalline structure. J Struct Biol 122:111–118
Tsai CJ, Ma B, Kumar S et al (2001) Protein folding: Binding of conformationally fluctuating building blocks via population selection. Crit Rev Biochem Mol Biol 36:399–433
Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492
Huber F, Schnauß J, Rönicke S et al (2013) Emergent complexity of the cytoskeleton: from single filaments to tissue. Adv Phys 62:1–112
Zhang S, Greenfield MA, Mata A et al (2010) A self-assembly pathway to aligned monodomain gels. Nat Mater 9:594–601
Angeloni NL, Bond CW, Tang Y et al (2011) Regeneration of the cavernous nerve by Sonic hedgehog using aligned peptide amphiphile nanofibers. Biomaterials 32:1091–1101
McClendon MT, Stupp SI (2012) Tubular hydrogels of circumferentially aligned nanofibers to encapsulate and orient vascular cells. Biomaterials 33:5713–5722
Chin SM, Synatschke CV, Liu S et al (2018) Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators. Nat Commun 9:2395
Li C, Iscen A, Sai H et al (2020) Supramolecular–covalent hybrid polymers for light-activated mechanical actuation. Nat Mater 19:900–909
Sheng Y, Chen Q, Yao J et al (2015) Hierarchical assembly of a dual-responsive macroscopic insulated molecular wire bundle in a gradient system. Sci Rep 5:1–6
Chen J, Leung FKC, Stuart MCA et al (2018) Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat Chem 10:132–138
Leung FKC, van den Enk T, Kajitani T et al (2018) Supramolecular packing and macroscopic alignment controls actuation speed in macroscopic strings of molecular motor amphiphiles. J Am Chem Soc 140:17724–17733
Leung FKC, Kajitani T, Stuart MCA et al (2019) Dual-controlled macroscopic motions in a supramolecular hierarchical assembly of motor amphiphiles. Angew Chem Int Ed 58:10985–10989
Li Q, Fuks G, Moulin E et al (2015) Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat Nanotechnol 10:161–165
Foy JT, Li Q, Goujon A et al (2017) Dual-light control of nanomachines that integrate motor and modulator subunits. Nat Nanotechnol 12:540–545
Goujon A, Mariani G, Lang T et al (2017) Controlled sol−gel transitions by actuating molecular machine based supramolecular polymers. J Am Chem Soc 139:4923–4928
Acknowledgements
This work was supported financially by the Hong Kong Research Grants Council, Early Career Scheme (ECS 25301320), the Croucher Foundation (Croucher Innovation Award), The Hong Kong Polytechnic University Start-up Fund (1-BE2H).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Leung, F.KC. (2022). Aqueous Supramolecular Assemblies of Photocontrolled Molecular Amphiphiles. In: Aboudzadeh, M.A., Frontera, A. (eds) Supramolecular Assemblies Based on Electrostatic Interactions. Springer, Cham. https://doi.org/10.1007/978-3-031-00657-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-00657-9_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-00656-2
Online ISBN: 978-3-031-00657-9
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)