Skip to main content

Aqueous Supramolecular Assemblies of Photocontrolled Molecular Amphiphiles

  • 138 Accesses

Abstract

Amphiphilic molecules, are composed of hydrophobic and hydrophilic parts and the intrinsic tendence to assemble in aqueous conditions, producing numerous supramolecular assembled structures and functional systems. Some of the recent challenges in the design of adaptive, responsive, far-from-equilibrium functional systems in aqueous environments, the proper design of photo-controlled moieties in intrinsic charged amphiphilic molecular structures offers fruitful opportunities to create supramolecular assembly systems, based on electrostatic interaction, with response to light in aqueous environment. In this chapter, we discuss the design strategy of photo-controlled molecular amphiphiles, the supramolecular assembled structures in aqueous environment and at air–water interfaces, as well as different strategies for producing dynamic functions in both isotropic and anisotropic supramolecular assembled materials. The motions at air–water interface, foam formation, reversible supramolecular assembly at nanometer length-scale, and life-like artificial muscle function are discussed. Manipulating the molecular structural design, supramolecular assembling conditions, and external stimulation, the photo-controlled molecular amphiphiles open directions toward applications ranging from controlled bio-target delivery to soft robotic.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-00657-9_9
  • Chapter length: 42 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-00657-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 9.1
Scheme 9.1
Fig. 9.2

Adapted image with permission from Ref. [115]. Copyright (1999) (American Chemical Society)

Fig. 9.3

Adapted images with permission from Ref. [117]. Copyright (2011) (Royal Society of Chemistry)

Fig. 9.4

Adapted images with permission from Ref. [118]. Copyright (2012) (American Chemical Society)

Fig. 9.5

Adapted image with permission from Ref. [121]. Copyright (2007) (Elsevier)

Fig. 9.6

Adapted image with permission from Ref. [122]. Copyright (2017) (American Chemical Society)

Fig. 9.7
Fig. 9.8

Adapted image with permission from Ref. [128]. Copyright (2020) (Elsevier)

Fig. 9.9
Fig. 9.10

Adapted image with permission from Ref. [136]. Copyright (2019) (Elsevier)

Fig. 9.11

Adapted image with permission from Ref. [138]. Open access under a CC BY 4.0 license, https://creativecommons.org/licenses/by/4.0/

Fig. 9.12

Adapted image with permission from Ref. [141]. Copyright (2020) (American Chemical Society)

Fig. 9.13

Adapted image with permission from Ref. [162]. Copyright (2008) (American Chemical Society)

Fig. 9.14

Adapted image with permission from Ref. [163]. Copyright (2009) (John Wiley and Sons)

Fig. 9.15
Fig. 9.16

Adapted image with permission from Ref. [168]. Copyright (2017) (Royal Society of Chemistry)

Fig. 9.17

Adapted image with permission from Ref. [173]. Copyright (2007) (John Wiley and Sons)

Fig. 9.18

Adapted image with permission from Ref. [187]. Copyright (2010) (Royal Society of Chemistry)

Fig. 9.19

Adapted image with permission from Ref. [189]. Copyright (2015) (Royal Society of Chemistry)

Fig. 9.20

Adapted image with permission from Ref. [193]. Copyright (2018) (Elsevier)

Fig. 9.21

Adapted image with permission from Ref. [194]. Copyright (2006) (American Chemical Society)

Fig. 9.22

Adapted image with permission from Ref. [195]. Copyright (2016) (American Chemical Society)

Fig. 9.23

Adapted image with permission from Ref. [196]. Copyright (2018) (Royal Society of Chemistry)

Fig. 9.24

Adapted image with permission from Ref. [197]. Open access under a CC BY 4.0 license, https://creativecommons.org/licenses/by/4.0/

Fig. 9.25

Adapted image with permission from Ref. [144]. Open access under a CC BY 4.0 license, https://creativecommons.org/licenses/by/4.0/

Fig. 9.26

Adapted image with permission from Ref. [199]. Open access under a CC BY 4.0 license, https://creativecommons.org/licenses/by/4.0/

Fig. 9.27

Adapted image with permission from Ref. [211]. Copyright (2015) (Springer Nature)

Fig. 9.28

Adapted image with permission from Ref. [212]. Copyright (2017) (Springer Nature)

Fig. 9.29

Adapted image with permission from Ref. [213]. Open access under a CC BY 4.0 license, https://creativecommons.org/licenses/by/4.0/

Fig. 9.30

Adapted image with permission from Ref. [214]. Copyright (2019) (John Wiley and Sons)

References

  1. Vittorio Degiorgio P, Corti M (1985) Amphiphiles: micelles, vesicles and microemulsions. North-Holland Publishing Group, Amsterdam

    Google Scholar 

  2. Domb C, Lebowitz JL, Gompper G, Schick M (1994) Self-assembling amphiphilic systems, phase transitions and critical phenemena. Academic Press, London

    Google Scholar 

  3. Lombardo D, Kiselev MA, Magazù S, Calandra P (2015) Amphiphiles self-assembly: basic concepts and future perspectives of supramolecular approaches. Adv Condens Matter Phys 2015:1–22

    Google Scholar 

  4. Vittorio Degiorgio P (1985) Physics of amphiphiles, micelles and microemulsions. Europhys News 16:9–12

    CrossRef  Google Scholar 

  5. Sorrenti A, Illa O, Ortuño RM (2013) Amphiphiles in aqueous solution: well beyond a soap bubble. Chem Soc Rev 42:8200–8219

    CAS  PubMed  CrossRef  Google Scholar 

  6. Song S, Dong R, Wang D et al (2013) Temperature regulated supramolecular structures via modifying the balance of multiple non-covalent interactions. Soft Matter 9:4209–4218

    CAS  CrossRef  Google Scholar 

  7. Li D, Yin P, Liu T (2012) Supramolecular architectures assembled from amphiphilic hybrid polyoxometalates. Dalt Trans 41:2853–2861

    CAS  CrossRef  Google Scholar 

  8. Dolbecq A, Dumas E, Mayer CR, Mialane P (2010) Hybrid organic-inorganic polyoxometalate compounds: from structural diversity to applications. Chem Rev 110:6009–6048

    CAS  PubMed  CrossRef  Google Scholar 

  9. Qi W, Wu L (2009) Polyoxometalate/polymer hybrid materials: fabrication and properties. Polym Int 58:1217–1225

    CAS  CrossRef  Google Scholar 

  10. Song A, Hao J (2009) Self-assembly of metal-ligand coordinated charged vesicles. Curr Opin Colloid Interface Sci 14:94–102

    CAS  CrossRef  Google Scholar 

  11. Zhang X, Wang C (2011) Supramolecular amphiphiles. Chem Soc Rev 40:94–101

    CAS  PubMed  CrossRef  Google Scholar 

  12. Chu Z, Dreiss CA, Feng Y (2013) Smart wormlike micelles. Chem Soc Rev 42:7174–7203

    CAS  PubMed  CrossRef  Google Scholar 

  13. Chen YL, Chen S, Frank C, Israelachvili J (1992) Molecular mechanisms and kinetics during the self-assembly of surfactant layers. J Colloid Interface Sci 153:244–265

    CAS  CrossRef  Google Scholar 

  14. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2(72):1525–1568

    CrossRef  Google Scholar 

  15. Ringsdorf H, Schlarb B, Venzmer J (1988) Molecular architecture and function of polymeric oriented systems: models for the study of organization, surface recognition, and dynamics of biomembranes. Angew Chem Int Ed Engl 27:113–158

    CrossRef  Google Scholar 

  16. Aida T, Meijer EW (2020) Supramolecular polymers—we’ve come full circle. Isr J Chem 60:33–47

    CAS  CrossRef  Google Scholar 

  17. Mendes AC, Baran ET, Reis RL, Azevedo HS (2013) Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5:582–612

    CAS  PubMed  CrossRef  Google Scholar 

  18. Kim HJ, Kim T, Lee M (2011) Responsive nanostructures from aqueous assembly of rigid—flexible block molecules. Acc Chem Res 44:72–82

    CAS  PubMed  CrossRef  Google Scholar 

  19. Krieg E, Rybtchinski B (2011) Noncovalent water-based materials: robust yet adaptive. Chem A Eur J 17:9016–9026

    CAS  CrossRef  Google Scholar 

  20. Lim YB, Moon KS, Lee M (2009) Recent advances in functional supramolecular nanostructures assembled from bioactive building blocks. Chem Soc Rev 38:925–934

    CAS  PubMed  CrossRef  Google Scholar 

  21. Oshovsky GV, Reinhoudt DN, Verboom W (2007) Supramolecular chemistry in water. Angew Chem Int Ed 46:2366–2393

    CAS  CrossRef  Google Scholar 

  22. Kato T, Mizoshita N, Kishimoto K (2005) Functional liquid-crystalline assemblies: self-organized soft materials. Angew Chem Int Ed 45:38–68

    CrossRef  CAS  Google Scholar 

  23. Luk YY, Abbott NL (2002) Applications of functional surfactants. Curr Opin Colloid Interface Sci 7:267–275

    CAS  CrossRef  Google Scholar 

  24. Bong DT, Clark TD, Granja JR, Reza Ghadiri M (2001) Self-assembling organic nanotubes. Angew Chem Int Ed 40:988–1011

    CAS  CrossRef  Google Scholar 

  25. Moore JS, Kraft ML (2008) Synchronized self-assembly. Science 320:620–621

    CAS  PubMed  CrossRef  Google Scholar 

  26. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    CAS  PubMed  CrossRef  Google Scholar 

  27. Krieg E, Niazov-Elkan A, Cohen E et al (2019) Noncovalent aqua materials based on perylene diimides. Acc Chem Res 52:2634–2646

    CAS  PubMed  CrossRef  Google Scholar 

  28. Hoffmann H (1994) Fascinating phenomena in surfactant chemistry. Adv Mater 6:116–129

    CAS  CrossRef  Google Scholar 

  29. Song S, Song A, Hao J (2014) Self-assembled structures of amphiphiles regulated via implanting external stimuli. RSC Adv 4:41864–41875

    CAS  CrossRef  Google Scholar 

  30. Wang C, Wang Z, Zhang X (2012) Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles. Acc Chem Res 45:608–618

    CAS  PubMed  CrossRef  Google Scholar 

  31. Soc C, Sato K, Hendricks MP et al (2018) Peptide supramolecular materials for therapeutics. Chem Soc Rev 47:7539–7551

    CrossRef  Google Scholar 

  32. Goor OJGM, Hendrikse SIS, Dankers PYW, Meijer EW (2017) From supramolecular polymers to multi-component biomaterials. Chem Soc Rev 46:6621–6637

    CAS  PubMed  CrossRef  Google Scholar 

  33. Krieg E, Bastings MMC, Besenius P, Rybtchinski B (2016) Supramolecular polymers in aqueous media. Chem Rev 116:2414–2477

    CAS  PubMed  CrossRef  Google Scholar 

  34. Würthner F, Saha-Möller CR, Fimmel B et al (2016) Perylene bisimide dye assemblies as archetype functional supramolecular materials. Chem Rev 116:962–1052

    PubMed  CrossRef  CAS  Google Scholar 

  35. Dong R, Zhou Y, Huang X et al (2015) Functional supramolecular polymers for biomedical applications. Adv Mater 27:498–526

    CAS  PubMed  CrossRef  Google Scholar 

  36. Du X, Zhou J, Xu B (2014) Supramolecular hydrogels made of basic biological building blocks. Chem An Asian J 9:1446–1472

    CAS  CrossRef  Google Scholar 

  37. Ma X, Tian H (2014) Stimuli-responsive supramolecular polymers in aqueous solution. Acc Chem Res 47:1971–1981

    CAS  PubMed  CrossRef  Google Scholar 

  38. Matile S, Jentzsch AV, Montenegro J, Fin A (2011) Recent synthetic transport systems. Chem Soc Rev 40:2453–2474

    CAS  PubMed  CrossRef  Google Scholar 

  39. Mclntosh TJ, Simon SA (1994) Long- and short-range interactions between phospholipid/ganglioside GM1 bilayers. Biochemistry 33:10477–10486

    CrossRef  Google Scholar 

  40. Israelachvili JN, Marcelja S, Horn RG (1980) Physical principles of membrane organization. Q Rev Biophys 13:121–200

    CAS  PubMed  CrossRef  Google Scholar 

  41. Wehner M, Würthner F (2020) Supramolecular polymerization through kinetic pathway control and living chain growth. Nat Rev Chem 4:38–53

    CAS  CrossRef  Google Scholar 

  42. Kazantsev RV, Dannenhoffer AJ, Weingarten AS et al (2017) Crystal-phase transitions and photocatalysis in supramolecular scaffolds. J Am Chem Soc 139:6120–6127

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  43. Fukui T, Kawai S, Fujinuma S et al (2017) Control over differentiation of a metastable supramolecular assembly in one and two dimensions. Nat Chem 9:493–499

    CAS  PubMed  CrossRef  Google Scholar 

  44. Tantakitti F, Boekhoven J, Wang X et al (2016) Energy landscapes and functions of supramolecular systems. Nat Mater 15:469–476

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  45. Aliprandi A, Mauro M, De Cola L (2016) Controlling and imaging biomimetic self-assembly. Nat Chem 8:10–15

    CAS  PubMed  CrossRef  Google Scholar 

  46. Ogi S, Sugiyasu K, Manna S et al (2014) Living supramolecular polymerization realized through a biomimetic approach. Nat Chem 6:188–195

    CAS  PubMed  CrossRef  Google Scholar 

  47. Korevaar PA, De Greef TFA, Meijer EW (2014) Pathway complexity in π-conjugated materials. Chem Mater 26:576–586

    CAS  CrossRef  Google Scholar 

  48. Boekhoven J, Poolman JM, Maity C et al (2013) Catalytic control over supramolecular gel formation. Nat Chem 5:433–437

    CAS  PubMed  CrossRef  Google Scholar 

  49. Korevaar PA, George SJ, Markvoort AJ et al (2012) Pathway complexity in supramolecular polymerization. Nature 481:492–496

    CAS  PubMed  CrossRef  Google Scholar 

  50. Yan Q, Zhao Y (2013) CO2-stimulated diversiform deformations of polymer assemblies. J Am Chem Soc 135:16300–16303

    CAS  PubMed  CrossRef  Google Scholar 

  51. Eastoe J, Vesperinas A (2005) Self-assembly of light-sensitive surfactants. Soft Matter 1:338–347

    CAS  PubMed  CrossRef  Google Scholar 

  52. Polarz S, Kunkel M, Donner A, Schlötter M (2018) Added-value surfactants. Chem A Eur J 24:18842–18856

    CAS  CrossRef  Google Scholar 

  53. Santer S (2018) Remote control of soft nano-objects by light using azobenzene containing surfactants. J Phys D Appl Phys 51:1–17

    CrossRef  CAS  Google Scholar 

  54. Zhu H, Shangguan L, Shi B et al (2018) Recent progress in macrocyclic amphiphiles and macrocyclic host-based supra-amphiphiles. Mater Chem Front 2:2152–2174

    CAS  CrossRef  Google Scholar 

  55. Basílio N, García-Río L (2017) Photoswitchable vesicles. Curr Opin Colloid Interface Sci 32:29–38

    CrossRef  CAS  Google Scholar 

  56. Liu Y, Jessop PG, Cunningham M et al (2006) Switchable surfactants. Science 313(80–):958–960

    Google Scholar 

  57. Wang A, Shi W, Huang J, Yan Y (2016) Adaptive soft molecular self-assemblies. Soft Matter 12:337–357

    CAS  PubMed  CrossRef  Google Scholar 

  58. Brown P, Alan Hatton T, Eastoe J (2015) Magnetic surfactants. Curr Opin Colloid Interface Sci 20:140–150

    CAS  CrossRef  Google Scholar 

  59. Frisch H, Besenius P (2014) pH-switchable self-assembled materials. Macromol Rapid Commun 36:346–363

    PubMed  CrossRef  CAS  Google Scholar 

  60. Singh J, Ranganathan R, Angayarkanny S et al (2013) pH-responsive aggregation states of chiral polymerizable amphiphiles from l-tyrosine and l-phenyl alanine in water. Langmuir 29:5734–5741

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  61. Seki T, Lin X, Yagai S (2013) Supramolecular engineering of perylene bisimide assemblies based on complementary multiple hydrogen bonding interactions. Asian J Org Chem 2:708–724

    CAS  CrossRef  Google Scholar 

  62. Song A, Dong S, Jia X et al (2005) An onion phase in salt-free zero-charged catanionic surfactant solutions. Angew Chem Int Ed 44:4018–4021

    CAS  CrossRef  Google Scholar 

  63. Brown P, Butts CP, Eastoe J (2013) Stimuli-responsive surfactants. Soft Matter 9:2365–2374

    CAS  CrossRef  Google Scholar 

  64. Lloyd GO, Steed JW (2009) Anion-tuning of supramolecular gel properties. Nat Chem 1:437–442

    CAS  PubMed  CrossRef  Google Scholar 

  65. Liu X, Abbott NL (2009) Spatial and temporal control of surfactant systems. J Colloid Interface Sci 339:1–18

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  66. George M, Weiss RG (2001) Chemically reversible organogels via “latent” gelators. Aliphatic amines with carbon dioxide. J Am Chem Soc 123:10393–10394

    CAS  PubMed  CrossRef  Google Scholar 

  67. Hirst AR, Escuder B, Miravet JF, Smith DK (2008) High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew Chem Int Ed 47:8002–8018

    CAS  CrossRef  Google Scholar 

  68. Vigier-Carrière C, Boulmedais F, Schaaf P, Jierry L (2018) Surface-assisted self-assembly strategies leading to supramolecular hydrogels. Angew Chem Int Ed 57:1448–1456

    CrossRef  CAS  Google Scholar 

  69. Tabor RF, McCoy TM, Hu Y, Wilkinson BL (2018) Physicochemical and biological characterisation of azobenzene-containing photoswitchable surfactants. Bull Chem Soc Jpn 91:932–939

    CAS  CrossRef  Google Scholar 

  70. Balzani V, Credi A, Venturi M (2009) Light powered molecular machines. Chem Soc Rev 38:1542–1550

    CAS  PubMed  CrossRef  Google Scholar 

  71. Wang L, Li Q (2018) Photochromism into nanosystems: towards lighting up the future nanoworld. Chem Soc Rev 47:1044–1097

    CAS  PubMed  CrossRef  Google Scholar 

  72. Wang C, Chen Q, Xu H et al (2010) Photoresponsive supramolecular amphiphiles for controlled self-assembly of nanofibers and vesicles. Adv Mater 22:2553–2555

    CAS  PubMed  CrossRef  Google Scholar 

  73. Carswell ADW, O’Rear EA, Grady BP (2003) Adsorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and polypyrrole nanostructures on flat surfaces: from spheres to wires to flat films. J Am Chem Soc 125:14793–14800

    CAS  PubMed  CrossRef  Google Scholar 

  74. Yagai S, Kitamura A (2008) Recent advances in photoresponsive supramolecular self-assemblies. Chem Soc Rev 37:1520–1529

    CAS  PubMed  CrossRef  Google Scholar 

  75. Ball P (2008) Water as an active constituent in cell biology. Chem Rev 108:74–108

    CAS  PubMed  CrossRef  Google Scholar 

  76. Lsraelachvili J, Wennerstrom H (1996) Role of hydration and water structure in biological and colloidal interactions. Nature 379:219–225

    CrossRef  Google Scholar 

  77. Myers D (2006) Surfactant science and technology. Wiley, Hoboken

    Google Scholar 

  78. Milton R (1989) Surfactants and interfacial phenomena. Wiley, Hoboken

    Google Scholar 

  79. Kunitake T (1992) Synthetic bilayer membranes: molecular design, self-organization, and application. Angew Chem Int Ed Engl 31:709–726

    CrossRef  Google Scholar 

  80. Monger FM, Littau CA (1991) Gemini surfactants; synthesis and properties. J Am Chem Soc 113:1451–1452

    CrossRef  Google Scholar 

  81. Fuhrhop J-H, Wang T (2004) Bolaamphiphiles. Chem Rev 104:2901–2937

    CAS  PubMed  CrossRef  Google Scholar 

  82. Meister A, Bastrop M, Koschoreck S et al (2007) Structure-property relationship in stimulus-responsive bolaamphiphile hydrogels. Langmuir 23:7715–7723

    CAS  PubMed  CrossRef  Google Scholar 

  83. Goulet-Hanssens A, Eisenreich F, Hecht S (2020) Enlightening materials with photoswitches. Adv Mater 32:1905966

    CAS  CrossRef  Google Scholar 

  84. Yagai S, Karatsu T, Kitamura A (2005) Photocontrollable self-assembly. Chem A Eur J 11:4054–4063

    CAS  CrossRef  Google Scholar 

  85. Velázquez MM, Alejo T, López-Díaz D et al (2016) Langmuir–Blodgett methodology: a versatile technique to build 2D material films. In: Two-dimensional materials: synthesis, characterization and potential applications. InTech, pp 21–42

    Google Scholar 

  86. Rogalska E, Bilewicz R, Brigaud T et al (2000) Formation and properties of Langmuir and Gibbs monolayers: a comparative study using hydrogenated and partially fluorinated amphiphilic derivatives of mannitol. Chem Phys Lipids 105:71–91

    CAS  PubMed  CrossRef  Google Scholar 

  87. Ariga K, Yamauchi Y, Mori T, Hill JP (2013) 25th anniversary article: what can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science. Adv Mater 25:6477–6512

    CAS  PubMed  CrossRef  Google Scholar 

  88. Holden DA, Ringsdorf H, Deblauwe V, Smets G (1984) Photosensitive monolayers. Studies of surface-active spiropyrans at the air-water interface. J Phys Chem 88:716–720

    CAS  CrossRef  Google Scholar 

  89. Rossos AK, Katsiaflaka M, Cai J et al (2018) Photochromism of amphiphilic dithienylethenes as Langmuir-Schaefer films. Langmuir 34:10905–10912

    CAS  PubMed  CrossRef  Google Scholar 

  90. Gong HF, Tang JA, Wang CM et al (2003) In situ observation of the photochromism in the Langmuir monolayer of a non-typical amphiphilic spiropyran derivative at the air/water interface. Chinese J Chem 21:387–391

    CAS  Google Scholar 

  91. Yamaguchi T, Kajikawa K, Takezoe H, Fukuda A (1992) Observation of photochromic reactions in spiropyran monolayers by surface potential measurement. Jpn J Appl Phys 31:1160–1163

    CAS  CrossRef  Google Scholar 

  92. Miyata A, Unuma Y, Higashigaki Y (1993) Optical properties and molecular orientation of aggregates in Langmuir-Blodgett films of A long-chain spiropyran. Bull Chem Soc Jpn 66:993–998

    CAS  CrossRef  Google Scholar 

  93. Tachibana H, Yamanaka Y, Matsumoto M (2002) Surface and photochemical properties of Langmuir monolayer and Langmuir-Blodgett films of a spiropyran derivative. J Mater Chem 12:938–942

    CAS  CrossRef  Google Scholar 

  94. Bubeck C (1988) Reactions in monolayers and Langmuir-Blodgett films. Elsevier Sequoia, The Netherlands

    CrossRef  Google Scholar 

  95. Ando E, Moriyama K, Arita K, Morimoto K (1990) Photochromic behaviors of long alkyl chain spiropyrans at the air-water interface and in LB films. Langmuir 6:1451–1454

    CAS  CrossRef  Google Scholar 

  96. Miyata A, Unuma Y, Higashigali Y (1991) Aggregates in Langmuir-Bladgett films of spiropyrans having hydroxyl or hydroxymethyl group. Bull Chem Soc Jpn 64:1719–1725

    CAS  CrossRef  Google Scholar 

  97. Whitten DG (1993) Photochemistry and photophysics of trans-stilbene and related alkenes in surfactant assemblies. Acc Chem Res 26:502–509

    CAS  CrossRef  Google Scholar 

  98. Cheng J, Štacko P, Rudolf P et al (2017) Bidirectional photomodulation of surface tension in Langmuir films. Angew Chem Int Ed 56:291–296

    CAS  CrossRef  Google Scholar 

  99. Backus EHG, Kuiper JM, Engberts JBFN et al (2011) Reversible optical control of monolayers on water through photoswitchable lipids. J Phys Chem B 115:2294–2302

    CAS  PubMed  CrossRef  Google Scholar 

  100. Yamamoto T, Umemura Y, Sato O, Einaga Y (2004) Photoswitchable magnetic films: Prussian blue intercalated in Langmuir-Blodgett films consisting of an amphiphilic azobenzene and a clay mineral. Chem Mater 16:1195–1201

    CAS  CrossRef  Google Scholar 

  101. Nakazawa T, Azumi R, Sakai H et al (2004) Brewster angle microscopic observations of the Langmuir films of amphiphilic spiropyran during compression and under UV illumination. Langmuir 20:5439–5444

    CAS  PubMed  CrossRef  Google Scholar 

  102. Kim I, Rabolt JF, Stroeve P (2000) Dynamic monolayer behavior of a photo-responsive azobenzene surfactant. Colloids Surf A Physicochem Eng Asp 171:167–174

    CAS  CrossRef  Google Scholar 

  103. Karthaus O, Shimomura M, Hioki M et al (1996) Reversible photomorphism in surface monolayers. J Am Chem Soc 118:9174–9175

    CAS  CrossRef  Google Scholar 

  104. Song B, Zhao J (2010) Orientation of the azobenzene spacer of carboxylic methyl ester gemini surfactants in Langmuir monolayer. Chinese J Chem 28:189–192

    CAS  CrossRef  Google Scholar 

  105. Kharlamov AA, Lyubimov AV, Vinogradov AM (1994) The photoinduced surface pressure relaxation processes in amphiphilic spiropyrane and spiroindolinonaphthooxazine. Thin Solid Films 244:962–965

    CAS  CrossRef  Google Scholar 

  106. Sakai K, Imaizumi Y, Oguchi T et al (2010) Adsorption characteristics of spiropyran-modified cationic surfactants at the silica/aqueous solution interface. Langmuir 26:9283–9288

    CAS  PubMed  CrossRef  Google Scholar 

  107. Eastoe J, Dominguez MS, Wyatt P et al (2002) Properties of a stilbene-containing gemini photosurfactant: Light-triggered changes in surface tension and aggregation. Langmuir 18:7837–7844

    CAS  CrossRef  Google Scholar 

  108. Kang HC, Lee BM, Yoon J, Yoon M (2000) Synthesis and surface-active properties of new photosensitive surfactants containing the azobenzene group. J Colloid Interface Sci 231:255–264

    CAS  PubMed  CrossRef  Google Scholar 

  109. Dunkin IR, Gittinger A, Sherrington DC, Whittaker P (1996) Synthesis, characterization and applications of azo-containing photodestructible surfactants. J Chem Soc Perkin Trans 2:1837–1842

    CrossRef  Google Scholar 

  110. Yang L, Takisawa N, Hayashita T, Shirahama K (1995) Colloid chemical characterization of the photosurfactant 4-ethylazobenzene 4′-(oxyethyl)trimethylammonium bromide. J Phys Chem 99:8799–8803

    CAS  CrossRef  Google Scholar 

  111. Hayashita T, Kurosawa T, Miyata T et al (1994) Effect of structural variation within cationic azo-surfactant upon photoresponsive function in aqueous solution. Colloid Polym Sci 272:1611–1619

    CAS  CrossRef  Google Scholar 

  112. Dunkin IR, Gittinger A, Sherrington DC, Whittaker P (1994) A photodestructible surfactant. J Chem Soc Chem Commun 2245–2246

    Google Scholar 

  113. Drummond CJ, Albers S, Furlong DN, Wells D (1991) Photocontrol of surface activity and self-assembly with a spirobenzopyran surfactant. Langmuir 7:2409–2411

    CAS  CrossRef  Google Scholar 

  114. Shinkai S, Matsuo K, Harada A, Manabe O (1982) Photocontrol of micellar catalyses. J Chem Soc Perkin Trans 1:1261–1265

    CrossRef  Google Scholar 

  115. Shin JY, Abbott NL (1999) Using light to control dynamic surface tensions of aqueous solutions of water soluble surfactants. Langmuir 15:4404–4410

    CAS  CrossRef  Google Scholar 

  116. Cicciarelli BA, Hatton TA, Smith KA (2007) Dynamic surface tension behavior in a photoresponsive surfactant system. Langmuir 23:4753–4764

    CAS  PubMed  CrossRef  Google Scholar 

  117. Chevallier E, Mamane A, Stone HA et al (2011) Pumping-out photo-surfactants from an air-water interface using light. Soft Matter 7:7866–7874

    CAS  CrossRef  Google Scholar 

  118. Chevallier E, Monteux C, Lequeux F, Tribet C (2012) Photofoams: remote control of foam destabilization by exposure to light using an azobenzene surfactant. Langmuir 28:2308–2312

    CAS  PubMed  CrossRef  Google Scholar 

  119. Chevallier E, Saint-Jalmes A, Cantat I et al (2013) Light induced flows opposing drainage in foams and thin-films using photosurfactants. Soft Matter 9:7054–7060

    CAS  CrossRef  Google Scholar 

  120. Mamane A, Chevallier E, Olanier L et al (2017) Optical control of surface forces and instabilities in foam films using photosurfactants. Soft Matter 13:1299–1305

    CAS  PubMed  CrossRef  Google Scholar 

  121. Jiang J, Ma Y, Cui Z (2017) Smart foams based on dual stimuli-responsive surfactant. Colloids Surf A Physicochem Eng Asp 513:287–291

    CAS  CrossRef  Google Scholar 

  122. Lei L, Xie D, Song B et al (2017) Photoresponsive foams generated by a rigid surfactant derived from dehydroabietic acid. Langmuir 33:7908–7916

    CAS  PubMed  CrossRef  Google Scholar 

  123. Chen S, Wang C, Yin Y, Chen K (2016) Synthesis of photo-responsive azobenzene molecules with different hydrophobic chain length for controlling foam stability. RSC Adv 6:60138–60144

    CAS  CrossRef  Google Scholar 

  124. Chen S, Zhang W, Wang C, Sun S (2016) A recycled foam coloring approach based on the reversible photo-isomerization of an azobenzene cationic surfactant. Green Chem 18:3972–3980

    CAS  CrossRef  Google Scholar 

  125. Chen S, Zhang Y, Chen K et al (2017) Insight into a fast-phototuning azobenzene switch for sustainably tailoring the foam stability. ASC Appl Mater Interfaces 9:13778–13784

    CAS  CrossRef  Google Scholar 

  126. Fei L, Ge F, Yin Y, Wang C (2019) Photo-responsive foam control base on nonionic azobenzene surfactant as stabilizer. Colloids Surf A Physicochem Eng Asp 560:366–375

    CAS  CrossRef  Google Scholar 

  127. Chen S, Fei L, Ge F, Wang C (2019) Photoresponsive aqueous foams with controllable stability from nonionic azobenzene surfactants in multiple-component systems. Soft Matter 15:8313–8319

    CAS  PubMed  CrossRef  Google Scholar 

  128. Chen S, Fei L, Ge F et al (2020) A versatile and recycled pigment foam coloring approach for natural and synthetic fibers with nearly-zero pollutant discharge. J Clean Prod 243:118504

    Google Scholar 

  129. Jiang X, Guo Q, Li H et al (2017) Photofoams and flotation mechanism of an azobenzene-based surfactant on quartz. Colloids Surf A Physicochem Eng Asp 535:201–205

    CAS  CrossRef  Google Scholar 

  130. Jiang X, Guo Q, He Y et al (2018) Using light to control the floatability of solid particles in aqueous solution of a Gemini surfactant. Colloids Surf A Physicochem Eng Asp 553:218–224

    CAS  CrossRef  Google Scholar 

  131. Varanakkottu SN, Anyfantakis M, Morel M et al (2016) Light-directed particle patterning by evaporative optical Marangoni assembly. Nano Lett 16:644–650

    CAS  PubMed  CrossRef  Google Scholar 

  132. Lv C, Varanakkottu SN, Baier T, Hardt S (2018) Controlling the trajectories of nano/micro particles using light-actuated marangoni flow. Nano Lett 18:6924–6930

    CAS  PubMed  CrossRef  Google Scholar 

  133. Diguet A, Guillermic RM, Magome N et al (2009) Photomanipulation of a droplet by the chromocapillary effect. Angew Chem Int Ed 48:9281–9284

    CAS  CrossRef  Google Scholar 

  134. Baigl D (2012) Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives. Lab Chip 12:3637–3653

    CAS  PubMed  CrossRef  Google Scholar 

  135. Kavokine N, Anyfantakis M, Morel M et al (2016) Light-driven transport of a liquid marble with and against surface flows. Angew Chem Int Ed 55:11183–11187

    CAS  CrossRef  Google Scholar 

  136. Vialetto J, Anyfantakis M, Rudiuk S et al (2019) Photoswitchable dissipative two-dimensional colloidal crystals. Angew Chem Int Ed 58:9145–9149

    CAS  CrossRef  Google Scholar 

  137. Schnurbus M, Stricker L, Ravoo BJ, Braunschweig B (2018) Smart air-water interfaces with arylazopyrazole surfactants and their role in photoresponsive aqueous foam. Langmuir 34:6028–6035

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  138. Honnigfort C, Campbell RA, Droste J et al (2020) Unexpected monolayer-to-bilayer transition of arylazopyrazole surfactants facilitates superior photo-control of fluid interfaces and colloids. Chem Sci 11:2085–2092

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  139. Sakai H, Ebana H, Sakai K et al (2007) Photo-isomerization of spiropyran-modified cationic surfactants. J Colloid Interface Sci 316:1027–1030

    CAS  PubMed  CrossRef  Google Scholar 

  140. Moo JGS, Presolski S, Pumera M (2016) Photochromic spatiotemporal control of bubble-propelled micromotors by a spiropyran molecular switch. ACS Nano 10:3543–3552

    CAS  PubMed  CrossRef  Google Scholar 

  141. Schnurbus M, Kabat M, Jarek E et al (2020) Spiropyran sulfonates for photo- and pH-responsive air-water interfaces and aqueous foam. Langmuir 36:6871–6879

    CAS  PubMed  CrossRef  Google Scholar 

  142. Zhmud BV, Tiberg F, Kizling J (2000) Dynamic surface tension in concentrated solutions of CnEm surfactants: a comparison between the theory and experiment. Langmuir 16:2557–2565

    CAS  CrossRef  Google Scholar 

  143. Beneventi D, Carre B, Gandini A (2001) Role of surfactant structure on surface and foaming properties. Colloids Surf A Physicochem Eng Asp 189:65–73

    CAS  CrossRef  Google Scholar 

  144. Chen S, Chen S, Leung FKC et al (2020) Dynamic assemblies of molecular motor amphiphiles control macroscopic foam properties. J Am Chem Soc 142:10163–10172

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  145. Nagarajan R (2002) The neglected role of the surfactant tail self-assembly: the neglected role of the surfactant tail. Langmuir 18:31–38

    CAS  CrossRef  Google Scholar 

  146. Li J, Zhao M, Zhou H et al (2012) Photo-induced transformation of wormlike micelles to spherical micelles in aqueous solution. Soft Matter 8:7858–7864

    CAS  CrossRef  Google Scholar 

  147. Wang D, Wei G, Dong R, Hao J (2013) Multiresponsive viscoelastic vesicle gels of nonionic C12EO4 and anionic AzoNa. Chem A Eur J 19:8253–8260

    CAS  CrossRef  Google Scholar 

  148. Tabor RF, Tan DD, Han SS et al (2014) Reversible pH- and photocontrollable carbohydrate-based surfactants. Chem A Eur J 20:13881–13884

    CAS  CrossRef  Google Scholar 

  149. Tu Y, Chen Q, Shang Y et al (2019) Photoresponsive behavior of wormlike micelles constructed by Gemini surfactant 12-3-12·2Br– and different cinnamate derivatives. Langmuir 35:4634–4645

    CAS  PubMed  CrossRef  Google Scholar 

  150. Fameau AL, Arnould A, Lehmann M, Von Klitzing R (2015) Photoresponsive self-assemblies based on fatty acids. Chem Commun 51:2907–2910

    CAS  CrossRef  Google Scholar 

  151. Jia K, Hu J, Dong J, Li X (2016) Light-responsive multillamellar vesicles in coumaric acid/alkyldimethylamine oxide binary systems: effects of surfactant and hydrotrope structures. J Colloid Interface Sci 477:156–165

    CAS  PubMed  CrossRef  Google Scholar 

  152. Blayo C, Houston JE, King SM, Evans RC (2018) Unlocking structure-self-assembly relationships in cationic azobenzene photosurfactants. Langmuir 34:10123–10134

    CAS  PubMed  CrossRef  Google Scholar 

  153. Shimizu T, Masuda M, Minamikawa H (2005) Supramolecular nanotube architectures based on amphiphilic molecules. Chem Rev 105:1401–1443

    CAS  PubMed  CrossRef  Google Scholar 

  154. Chen S, Costil R, Leung FKC, Feringa BL (2021) Self-assembly of photoresponsive molecular amphiphiles in aqueous media. Angew Chem Int Ed 60:11604–11627

    CAS  CrossRef  Google Scholar 

  155. De JJJD, Lucas LN, Kellogg RM (2004) Supramolecular chirality into molecular chirality. Science 304:278–281

    CrossRef  CAS  Google Scholar 

  156. Eelkema R, Feringa BL (2006) Amplification of chirality in liquid crystals. Org Biomol Chem 4:3729–3745

    CAS  PubMed  CrossRef  Google Scholar 

  157. de Jong JJD, van Rijn P, Tiemersma-Wegeman TD et al (2008) Dynamic chirality, chirality transfer and aggregation behaviour of dithienylethene switches. Tetrahedron 64:8324–8335

    CrossRef  CAS  Google Scholar 

  158. Katsonis N, Lacaze E, Feringa BL (2008) Molecular chirality at fluid/solid interfaces: expression of asymmetry in self-organised monolayers. J Mater Chem 18:2065–2073

    CAS  CrossRef  Google Scholar 

  159. Barclay TG, Constantopoulos K, Matisons J (2014) Nanotubes self-assembled from amphiphilic molecules via helical intermediates. Chem Rev 114:10217–10291

    CAS  PubMed  CrossRef  Google Scholar 

  160. Vandijken DJ, Beierle JM, Stuart MCA et al (2014) Autoamplification of molecular chirality through the induction of supramolecular chirality. Angew Chem Int Ed 53:5073–5077

    CAS  CrossRef  Google Scholar 

  161. Liu M, Zhang L, Wang T (2015) Supramolecular chirality in self-assembled systems. Chem Rev 115:7304–7397

    CAS  PubMed  CrossRef  Google Scholar 

  162. Muraoka T, Cui H, Stupp SI (2008) Quadruple helix formation of a photoresponsive peptide amphiphile and its light-triggered dissociation into single fibers. J Am Chem Soc 130:2946–2947

    CAS  PubMed  CrossRef  Google Scholar 

  163. Muraoka T, Koh CY, Cui H, Stupp SI (2009) Light-triggered bioactivity in three dimensions. Angew Chem Int Ed 48:5946–5949

    CAS  CrossRef  Google Scholar 

  164. Paramonov SE, Jun HW, Hartgerink JD (2006) Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J Am Chem Soc 128:7291–7298

    CAS  PubMed  CrossRef  Google Scholar 

  165. Caroli G, Coleman AC, Beierle JM et al (2011) Light-induced disassembly of self-assembled vesicle-capped nanotubes observed in real time. Nat Nanotechnol 6:547–552

    PubMed  CrossRef  CAS  Google Scholar 

  166. Erne PM, Van Bezouwen LS, Štacko P et al (2015) Loading of vesicles into soft amphiphilic nanotubes using osmosis. Angew Chem Int Ed 54:15122–15127

    CAS  CrossRef  Google Scholar 

  167. Sun Y, Ji Y, Yu H et al (2016) Near-infrared light-sensitive liposomes for controlled release. RSC Adv 6:81245–81249

    CAS  CrossRef  Google Scholar 

  168. Wang D, Hou X, Ma B et al (2017) UV and NIR dual-responsive self-assembly systems based on a novel coumarin derivative surfactant. Soft Matter 13:6700–6708

    CAS  PubMed  CrossRef  Google Scholar 

  169. Wang G, Engberts JBFN (1994) Induction of aggregate formation of cationic polysoaps and surfactants by low concentrations of additives in aqueous solution. Langmuir 10:2583–2587

    CAS  CrossRef  Google Scholar 

  170. Buwalda RT, Jonker JM, Engberts JBFN (1999) Aggregation of Azo dyes with cationic amphiphiles at low concentrations in aqueous solution. Langmuir 15:1083–1089

    CAS  CrossRef  Google Scholar 

  171. Buwalda RT, Engberts JBFN (2001) Aggregation of dicationic surfactants with methyl orange in aqueous solution. Langmuir 17:1054–1059

    CAS  CrossRef  Google Scholar 

  172. Buwalda RT, Stuart MCA, Engberts JBFN (2002) Interactions of an azobenzene-functionalized anionic amphiphile with cationic amphiphiles in aqueous solution. Langmuir 18:6507–6512

    CAS  CrossRef  Google Scholar 

  173. Li LS, Jiang H, Messmore BW et al (2007) A torsional strain mechanism to tune pitch in supramolecular helices. Angew Chem Int Ed 46:5873–5876

    CAS  CrossRef  Google Scholar 

  174. Song X, Perlstein J, Whitten DG (1997) Supramolecular aggregates of azobenzene phospholipids and related compounds in bilayer assemblies and other microheterogeneous media: structure, properties, and photoreactivity. J Am Chem Soc 119:9144–9159

    CAS  CrossRef  Google Scholar 

  175. Sakai H, Matsumura A, Yokoyama S et al (1999) Photochemical switching of vesicle formation using an azobenzene-modified surfactant. J Phys Chem B 103:10737–10740

    CAS  CrossRef  Google Scholar 

  176. Khairutdinov RF, Hurst JK (2004) Light-driven transmembrane ion transport by spiropyran-crown ether supramolecular assemblies. Langmuir 20:1781–1785

    CAS  CrossRef  Google Scholar 

  177. Lee CT, Smith KA, Hatton TA (2004) Photoreversible viscosity changes and gelation in mixtures of hydrophobically modified polyelectrolytes and photosensitive surfactants. Macromolecules 37:5397–5405

    CAS  CrossRef  Google Scholar 

  178. Bonini M, Berti D, Di Meglio JM et al (2005) Surfactant aggregates hosting a photoresponsive amphiphile: Structure and photoinduced conformational changes. Soft Matter 1:444–454

    CAS  PubMed  CrossRef  Google Scholar 

  179. Faure D, Gravier J, Labrot T et al (2005) Photoinduced morphism of gemini surfactant aggregates. Chem Commun 16:1167–1169

    CrossRef  CAS  Google Scholar 

  180. Hubbard FP, Santonicola G, Kaler EW, Abbott NL (2005) Small-angle neutron scattering from mixtures of sodium dodecyl sulfate and a cationic, bolaform surfactant containing azobenzene. Langmuir 21:6131–6136

    CAS  PubMed  CrossRef  Google Scholar 

  181. Shang T, Smith KA, Hatton TA (2006) Self-assembly of a nonionic photoresponsive surfactant under varying irradiation conditions: a small-angle neutron scattering and cryo-TEM study. Langmuir 22:1436–1442

    CAS  PubMed  CrossRef  Google Scholar 

  182. Hubbard FP, Abbott NL (2007) Effect of light on self-assembly of aqueous mixtures of sodium dodecyl sulfate and a cationic, bolaform surfactant containing azobenzene. Langmuir 23:4819–4829

    CAS  PubMed  CrossRef  Google Scholar 

  183. Sakai H, Orihara Y, Kodashima H et al (2005) Photoinduced reversible change of fluid viscosity. J Am Chem Soc 127:13454–13455

    CAS  PubMed  CrossRef  Google Scholar 

  184. Alvarez-Lorenzo C, Bromberg L, Concheiro A (2009) Light-sensitive intelligent drug delivery systems. Photochem Photobiol 85:848–860

    CAS  PubMed  CrossRef  Google Scholar 

  185. Fomina N, Sankaranarayanan J, Almutairi A (2012) Photochemical mechanisms of light-triggered release from nanocarriers. Adv Drug Deliv Rev 64:1005–1020

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  186. Liu X, Yang B, Wang Y et al (2005) New nanoscale pulsatile drug delivery system shanghai institute of organic chemistry, Chinese academy applications in drug delivery and controlled release. This is because liposomes with diameters approximately of 100 nm can be delivered to tumor tissue. Chem Mater 17:2792–2795

    CAS  CrossRef  Google Scholar 

  187. Lin Y, Cheng X, Qiao Y et al (2010) Creation of photo-modulated multi-state and multi-scale molecular assemblies via binary-state molecular switch. Soft Matter 6:902–908

    CAS  CrossRef  Google Scholar 

  188. Bi Y, Wei H, Hu Q et al (2015) Wormlike micelles with photoresponsive viscoelastic behavior formed by surface active ionic liquid/azobenzene derivative mixed solution. Langmuir 31:3789–3798

    CAS  PubMed  CrossRef  Google Scholar 

  189. Tabor RF, Pottage MJ, Garvey CJ, Wilkinson BL (2015) Light-induced structural evolution of photoswitchable carbohydrate-based surfactant micelles. Chem Commun 51:5509–5512

    CAS  CrossRef  Google Scholar 

  190. Kelly EA, Houston JE, Evans RC (2019) Probing the dynamic self-assembly behaviour of photoswitchable wormlike micelles in real-time. Soft Matter 15:1253–1259

    CAS  PubMed  CrossRef  Google Scholar 

  191. Lund R, Brun G, Chevallier E et al (2016) Kinetics of photocontrollable micelles: light-induced self-assembly and disassembly of azobenzene-based surfactants revealed by TR-SAXS. Langmuir 32:2539–2548

    CAS  PubMed  CrossRef  Google Scholar 

  192. Song B, Hu Y, Zhao J (2009) A single-component photo-responsive fluid based on a gemini surfactant with an azobenzene spacer. J Colloid Interface Sci 333:820–822

    CAS  PubMed  CrossRef  Google Scholar 

  193. Zhang D, Lu X, Li Y et al (2018) Dual stimuli-responsive wormlike micelles base on cationic azobenzene surfactant and sodium azophenol. Colloids Surf A Physicochem Eng Asp 543:155–162

    CAS  CrossRef  Google Scholar 

  194. Hirose T, Matsuda K, Irie M (2006) Self-assembly of photochromic diarylethenes with amphiphilic side chains: reversible thermal and photochemical control. J Org Chem 71:7499–7508

    CAS  PubMed  CrossRef  Google Scholar 

  195. Van Dijken DJ, Chen J, Stuart MCA et al (2016) Amphiphilic molecular motors for responsive aggregation in water. J Am Chem Soc 138:660–669

    PubMed  CrossRef  CAS  Google Scholar 

  196. Kwangmettatam S, Kudernac T (2018) Light-fuelled reversible expansion of spiropyran-based vesicles in water. Chem Commun 54:5311–5314

    CAS  CrossRef  Google Scholar 

  197. Xu F, Pfeifer L, Stuart MCA et al (2020) Multi-modal control over the assembly of a molecular motor bola-amphiphile in water. Chem Commun 56:7451–7454

    CAS  CrossRef  Google Scholar 

  198. Fuentes E, Gerth M, Berrocal JA et al (2020) An azobenzene-based single-component supramolecular polymer responsive to multiple stimuli in water. J Am Chem Soc 142:10069–10078

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  199. Geng S, Wang Y, Wang L et al (2017) A light-responsive self-assembly formed by a cationic Azobenzene derivative and SDS as a drug delivery system. Sci Rep 7:1–13

    CrossRef  CAS  Google Scholar 

  200. Simmons NS, Blout ER (1960) The structure of tobacco mosaic virus and its components: ultraviolet optical rotatory dispersion. Biophys J 1:55–62

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  201. Iino T (1974) Assembly of Salmonella Flagellin in vitro and vivo. J Supramol Struct 2:372–384

    CAS  PubMed  CrossRef  Google Scholar 

  202. Prockop DJ, Fertala A (1998) The collagen fibril: the almost crystalline structure. J Struct Biol 122:111–118

    CAS  PubMed  CrossRef  Google Scholar 

  203. Tsai CJ, Ma B, Kumar S et al (2001) Protein folding: Binding of conformationally fluctuating building blocks via population selection. Crit Rev Biochem Mol Biol 36:399–433

    CAS  PubMed  CrossRef  Google Scholar 

  204. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  205. Huber F, Schnauß J, Rönicke S et al (2013) Emergent complexity of the cytoskeleton: from single filaments to tissue. Adv Phys 62:1–112

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  206. Zhang S, Greenfield MA, Mata A et al (2010) A self-assembly pathway to aligned monodomain gels. Nat Mater 9:594–601

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  207. Angeloni NL, Bond CW, Tang Y et al (2011) Regeneration of the cavernous nerve by Sonic hedgehog using aligned peptide amphiphile nanofibers. Biomaterials 32:1091–1101

    CAS  PubMed  CrossRef  Google Scholar 

  208. McClendon MT, Stupp SI (2012) Tubular hydrogels of circumferentially aligned nanofibers to encapsulate and orient vascular cells. Biomaterials 33:5713–5722

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  209. Chin SM, Synatschke CV, Liu S et al (2018) Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators. Nat Commun 9:2395

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  210. Li C, Iscen A, Sai H et al (2020) Supramolecular–covalent hybrid polymers for light-activated mechanical actuation. Nat Mater 19:900–909

    CAS  PubMed  CrossRef  Google Scholar 

  211. Sheng Y, Chen Q, Yao J et al (2015) Hierarchical assembly of a dual-responsive macroscopic insulated molecular wire bundle in a gradient system. Sci Rep 5:1–6

    CAS  Google Scholar 

  212. Chen J, Leung FKC, Stuart MCA et al (2018) Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat Chem 10:132–138

    CAS  PubMed  CrossRef  Google Scholar 

  213. Leung FKC, van den Enk T, Kajitani T et al (2018) Supramolecular packing and macroscopic alignment controls actuation speed in macroscopic strings of molecular motor amphiphiles. J Am Chem Soc 140:17724–17733

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  214. Leung FKC, Kajitani T, Stuart MCA et al (2019) Dual-controlled macroscopic motions in a supramolecular hierarchical assembly of motor amphiphiles. Angew Chem Int Ed 58:10985–10989

    CAS  CrossRef  Google Scholar 

  215. Li Q, Fuks G, Moulin E et al (2015) Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat Nanotechnol 10:161–165

    PubMed  CrossRef  CAS  Google Scholar 

  216. Foy JT, Li Q, Goujon A et al (2017) Dual-light control of nanomachines that integrate motor and modulator subunits. Nat Nanotechnol 12:540–545

    CAS  PubMed  CrossRef  Google Scholar 

  217. Goujon A, Mariani G, Lang T et al (2017) Controlled sol−gel transitions by actuating molecular machine based supramolecular polymers. J Am Chem Soc 139:4923–4928

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Hong Kong Research Grants Council, Early Career Scheme (ECS 25301320), the Croucher Foundation (Croucher Innovation Award), The Hong Kong Polytechnic University Start-up Fund (1-BE2H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco King-Chi Leung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Leung, F.KC. (2022). Aqueous Supramolecular Assemblies of Photocontrolled Molecular Amphiphiles. In: Aboudzadeh, M.A., Frontera, A. (eds) Supramolecular Assemblies Based on Electrostatic Interactions. Springer, Cham. https://doi.org/10.1007/978-3-031-00657-9_9

Download citation