Skip to main content

The Role of Virtual Reality, Telesurgery, and Teleproctoring in Robotic Surgery

  • Chapter
  • First Online:
Robotic Urologic Surgery

Abstract

Surgical robotic systems are not only telemanipulation tools, but also computer interfaces integrating multiple additional features (e.g., real-time display of 3D reconstructions of preoperative imaging, allowing virtual and augmented reality guidance). Double console systems already support proctoring within the same operating room, and they could be set up at any distance with an adequate network connection, allowing for teleproctoring and intraoperative telesurgical assistance. In 2001, the Lindbergh Operation demonstrated that remote robotic surgery can be performed safely. This completely telesurgical transatlantic cholecystectomy was performed via the surgeon console in New York, United States, controlling the ZEUS robotic system’s patient-side cart in Strasbourg, France. Back in the early years of robotic surgery, the cost for the availability of a high-speed terrestrial optical-fiber network with asynchronous transfer mode (ATM) technology for data transport was substantial, and remote telesurgery was cost-effective neither for routine procedures nor for increasing access to healthcare. The advent of fifth-generation cellular networks (5G) generates a technology standard for broadband connectivity with low latency. Its availability provides a more economical solution than ATM technology, and 5G networks will become the backbone for a democratized robotic telesurgery. Download speeds can reach the gigabit per second (Gbit/s) range, and broadband capacity will further increase during the rollout of 5G networks. In combination with near-instantaneous latency, 5G will even allow the integration of virtual and augmented reality into telesurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yeung AWK, Tosevska A, Klager E, Eibensteiner F, Laxar D, Stoyanov J, et al. Virtual and augmented reality applications in medicine: analysis of the scientific literature. J Med Internet Res. 2021;23(2):e25499.

    PubMed  PubMed Central  Google Scholar 

  2. Schmidt MW, Koppinger KF, Fan C, Kowalewski KF, Schmidt LP, Vey J, et al. Virtual reality simulation in robot-assisted surgery: meta-analysis of skill transfer and predictability of skill. BJS Open. 2021;5(2):zraa066.

    PubMed  PubMed Central  Google Scholar 

  3. Porpiglia F, Bertolo R, Checcucci E, Amparore D, Autorino R, Dasgupta P, et al. Development and validation of 3D printed virtual models for robot-assisted radical prostatectomy and partial nephrectomy: urologists’ and patients’ perception. World J Urol. 2018;36(2):201–7.

    PubMed  Google Scholar 

  4. Lachkar AA, Soler L, Diana M, Becmeur F, Marescaux J. 3D imaging and urology: why 3D reconstruction will be mandatory before performing surgery. Arch Esp Urol. 2019;72(3):347–52.

    PubMed  Google Scholar 

  5. Mascagni P, Longo F, Barberio M, Seeliger B, Agnus V, Saccomandi P, et al. New intraoperative imaging technologies: innovating the surgeon's eye toward surgical precision. J Surg Oncol. 2018;118(2):265–82.

    PubMed  Google Scholar 

  6. Nicolau S, Soler L, Mutter D, Marescaux J. Augmented reality in laparoscopic surgical oncology. Surg Oncol. 2011;20(3):189–201.

    PubMed  Google Scholar 

  7. Le Mer P, Soler L, Pavy D, Bernard A, Moreau J, Mutter D, et al. Argonaute 3D: a real-time cooperative medical planning software on DSL network. Stud Health Technol Inform. 2004;98:203–9.

    PubMed  Google Scholar 

  8. Mutter D, Dallemagne B, Bailey C, Soler L, Marescaux J. 3D virtual reality and selective vascular control for laparoscopic left hepatic lobectomy. Surg Endosc. 2009;23(2):432–5.

    CAS  PubMed  Google Scholar 

  9. Pessaux P, Diana M, Soler L, Piardi T, Mutter D, Marescaux J. Towards cybernetic surgery: robotic and augmented reality-assisted liver segmentectomy. Langenbeck’s Arch Surg. 2015;400(3):381–5.

    Google Scholar 

  10. Marescaux J, Clement JM, Tassetti V, Koehl C, Cotin S, Russier Y, et al. Virtual reality applied to hepatic surgery simulation: the next revolution. Ann Surg. 1998;228(5):627–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Collins JW, Ghazi A, Stoyanov D, Hung A, Coleman M, Cecil T, et al. Utilising an accelerated delphi process to develop guidance and protocols for telepresence applications in remote robotic surgery training. Eur Urol Open Sci. 2020;22:23–33.

    PubMed  PubMed Central  Google Scholar 

  12. Intuitive Surgical. Iris 2021. Available from: https://www.intuitive.com/en-us/products-and-services/da-vinci/vision/iris

  13. Michiels C, Khene ZE, Prudhomme T, Boulenger de Hauteclocque A, Cornelis FH, Percot M, et al. 3D-Image guided robotic-assisted partial nephrectomy: a multi-institutional propensity score-matched analysis (UroCCR study 51). World J Urol. 2021. https://doi.org/10.1007/s00345-021-03645-1.

  14. Heitz A, Weinzorn J, Noblet V, Naegel B, Charnoz A, Heitz F, et al., editors. Lubrav: a new framework for the segmentation of the lung’s tubular structures. 2021 IEEE 18th international symposium on biomedical imaging (ISBI). IEEE; 2021. https://doi.org/10.1007/s00345-021-03645-1.

  15. De Hauteclocque A, Michiels C, Sarrazin J, Faessel M, Mosillo L, Percot M, et al. Intérêt de modèles tridimensionnels virtuels et physiques pour évaluation de la complexité tumorale rénale et la planification opératoire des néphrectomies partielles (étude UroCCR-63: 3D-planning). Prog Urol. 2019;29(13):757–8.

    Google Scholar 

  16. Marescaux J, Rubino F, Arenas M, Mutter D, Soler L. Augmented-reality-assisted laparoscopic adrenalectomy. JAMA. 2004;292(18):2214–5.

    CAS  PubMed  Google Scholar 

  17. D'Agostino J, Diana M, Vix M, Nicolau S, Soler L, Bourhala K, et al. Three-dimensional metabolic and radiologic gathered evaluation using VR-RENDER fusion: a novel tool to enhance accuracy in the localization of parathyroid adenomas. World J Surg. 2013;37(7):1618–25.

    PubMed  Google Scholar 

  18. Franchini Melani AG, Diana M, Marescaux J. The quest for precision in transanal total mesorectal excision. Tech Coloproctol. 2016;20(1):11–8.

    CAS  PubMed  Google Scholar 

  19. Guerriero L, Quero G, Diana M, Soler L, Agnus V, Marescaux J, et al. Virtual reality exploration and planning for precision colorectal surgery. Dis Colon Rectum. 2018;61(6):719–23.

    PubMed  Google Scholar 

  20. Pessaux P, Diana M, Soler L, Piardi T, Mutter D, Marescaux J. Robotic duodenopancreatectomy assisted with augmented reality and real-time fluorescence guidance. Surg Endosc. 2014;28(8):2493–8.

    PubMed  Google Scholar 

  21. Soler L, Nicolau S, Pessaux P, Mutter D, Marescaux J. Real-time 3D image reconstruction guidance in liver resection surgery. Hepatobiliary Surg Nutr. 2014;3(2):73–81.

    PubMed  PubMed Central  Google Scholar 

  22. Hallet J, Soler L, Diana M, Mutter D, Baumert TF, Habersetzer F, et al. Trans-thoracic minimally invasive liver resection guided by augmented reality. J Am Coll Surg. 2015;220(5):e55–60.

    PubMed  Google Scholar 

  23. Porpiglia F, Fiori C, Checcucci E, Amparore D, Bertolo R. Hyperaccuracy three-dimensional reconstruction is able to maximize the efficacy of selective clamping during robot-assisted partial nephrectomy for complex renal masses. Eur Urol. 2018;74(5):651–60.

    PubMed  Google Scholar 

  24. Porpiglia F, Fiori C, Checcucci E, Amparore D, Bertolo R. Augmented reality robot-assisted radical prostatectomy: preliminary experience. Urology. 2018;115:184.

    PubMed  Google Scholar 

  25. Porpiglia F, Checcucci E, Amparore D, Autorino R, Piana A, Bellin A, et al. Augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HA3D) technology: a radiological and pathological study. BJU Int. 2019;123(5):834–45.

    PubMed  Google Scholar 

  26. Porpiglia F, Checcucci E, Amparore D, Manfredi M, Massa F, Piazzolla P, et al. Three-dimensional elastic augmented-reality robot-assisted radical prostatectomy using hyperaccuracy three-dimensional reconstruction technology: a step further in the identification of capsular involvement. Eur Urol. 2019;76(4):505–14.

    PubMed  Google Scholar 

  27. Porpiglia F, Checcucci E, Amparore D, Piramide F, Volpi G, Granato S, et al. Three-dimensional augmented reality robot-assisted partial nephrectomy in case of complex tumours (PADUA >/=10): a new intraoperative tool overcoming the ultrasound guidance. Eur Urol. 2020;78(2):229–38.

    PubMed  Google Scholar 

  28. Checcucci E, Autorino R, Cacciamani GE, Amparore D, De Cillis S, Piana A, et al. Artificial intelligence and neural networks in urology: current clinical applications. Minerva Urol Nefrol. 2020;72(1):49–57.

    PubMed  Google Scholar 

  29. Amparore D, Checcucci E, Piazzolla P, Piramide F, De Cillis S, Piana A, Verri P, Manfredi M, Fiori C, Vezzetti E, Porpiglia F. Indocyanine Green Drives Computer Vision Based 3D Augmented Reality Robot Assisted Partial Nephrectomy: The Beginning of “Automatic” Overlapping Era. Urology. 2022 Jan 19:S0090-4295(22)00029-2. https://doi.org/10.1016/j.urology.2021.10.053. Epub ahead of print. PMID: 35063460.

  30. Walz MK, Alesina PF, Wenger FA, Deligiannis A, Szuczik E, Petersenn S, et al. Posterior retroperitoneoscopic adrenalectomy--results of 560 procedures in 520 patients. Surgery. 2006;140(6):943–8. discussion 8–50

    PubMed  Google Scholar 

  31. Modrzejewski R, Collins T, Seeliger B, Bartoli A, Hostettler A, Marescaux J. An in vivo porcine dataset and evaluation methodology to measure soft-body laparoscopic liver registration accuracy with an extended algorithm that handles collisions. Int J Comput Assist Radiol Surg. 2019;14(7):1237–45.

    PubMed  Google Scholar 

  32. Gimenez M, Gallix B, Costamagna G, Vauthey JN, Moche M, Wakabayashi G, et al. Definitions of computer-assisted surgery and intervention, image-guided surgery and intervention, hybrid operating room, and guidance systems: strasbourg international consensus study. Ann Surg Open. 2020;1(2):e021.

    PubMed  PubMed Central  Google Scholar 

  33. Connor MJ, Dasgupta P, Ahmed HU, Raza A. Autonomous surgery in the era of robotic urology: friend or foe of the future surgeon? Nat Rev Urol. 2020;17(11):643–9.

    PubMed  Google Scholar 

  34. Seyam R, Khalil MI, Kamel MH, Altaweel WM, Davis R, Bissada NK. Organ-sparing procedures in GU cancer: part 1-organ-sparing procedures in renal and adrenal tumors: a systematic review. Int Urol Nephrol. 2019;51(3):377–93.

    PubMed  Google Scholar 

  35. Abu-Ghanem Y, Fernandez-Pello S, Bex A, Ljungberg B, Albiges L, Dabestani S, et al. Limitations of available studies prevent reliable comparison between tumour ablation and partial nephrectomy for patients with localised renal masses: a systematic review from the European Association of Urology Renal Cell Cancer Guideline Panel. Eur Urol Oncol. 2020;3(4):433–52.

    PubMed  Google Scholar 

  36. Ierardi AM, Carnevale A, Angileri SA, Pellegrino F, Renzulli M, Golfieri R, et al. Outcomes following minimally invasive imagine-guided percutaneous ablation of adrenal glands. Gland Surg. 2020;9(3):859–66.

    PubMed  PubMed Central  Google Scholar 

  37. Colleselli D, Janetschek G. Current trends in partial adrenalectomy. Curr Opin Urol. 2015;25(2):89–94.

    PubMed  Google Scholar 

  38. Lorenz K, Langer P, Niederle B, Alesina P, Holzer K, Nies C, et al. Surgical therapy of adrenal tumors: guidelines from the German Association of Endocrine Surgeons (CAEK). Langenbeck’s Arch Surg. 2019;404(4):385–401.

    CAS  Google Scholar 

  39. Kaye DR, Storey BB, Pacak K, Pinto PA, Linehan WM, Bratslavsky G. Partial adrenalectomy: underused first line therapy for small adrenal tumors. J Urol. 2010;184(1):18–25.

    PubMed  PubMed Central  Google Scholar 

  40. Lowery AJ, Seeliger B, Alesina PF, Walz MK. Posterior retroperitoneoscopic adrenal surgery for clinical and subclinical Cushing’s syndrome in patients with bilateral adrenal disease. Langenbeck’s Arch Surg. 2017;402(5):775–85.

    Google Scholar 

  41. Walz MK, Peitgen K, Diesing D, Petersenn S, Janssen OE, Philipp T, et al. Partial versus total adrenalectomy by the posterior retroperitoneoscopic approach: early and long-term results of 325 consecutive procedures in primary adrenal neoplasias. World J Surg. 2004;28(12):1323–9.

    PubMed  Google Scholar 

  42. Seeliger B, Alesina PF, Walz MK, Pop R, Charles AL, Geny B, et al. Intraoperative imaging for remnant viability assessment in bilateral posterior retroperitoneoscopic partial adrenalectomy in an experimental model. Br J Surg. 2020.

    Google Scholar 

  43. Walz MK, Iova LD, Deimel J, Neumann HPH, Bausch B, Zschiedrich S, et al. Minimally Invasive Surgery (MIS) in children and adolescents with pheochromocytomas and retroperitoneal paragangliomas: experiences in 42 patients. World J Surg. 2018;42(4):1024–30.

    PubMed  Google Scholar 

  44. Brauckhoff M, Stock K, Stock S, Lorenz K, Sekulla C, Brauckhoff K, et al. Limitations of intraoperative adrenal remnant volume measurement in patients undergoing subtotal adrenalectomy. World J Surg. 2008;32(5):863–72.

    PubMed  Google Scholar 

  45. Seeliger B, Walz MK, Alesina PF, Agnus V, Pop R, Barberio M, et al. Fluorescence-enabled assessment of adrenal gland localization and perfusion in posterior retroperitoneoscopic adrenal surgery in a preclinical model. Surg Endosc. 2020;34(3):1401–11.

    PubMed  Google Scholar 

  46. Kong SH, Haouchine N, Soares R, Klymchenko A, Andreiuk B, Marques B, et al. Robust augmented reality registration method for localization of solid organs’ tumors using CT-derived virtual biomechanical model and fluorescent fiducials. Surg Endosc. 2017;31(7):2863–71.

    PubMed  Google Scholar 

  47. Manny TB, Pompeo AS, Hemal AK. Robotic partial adrenalectomy using indocyanine green dye with near-infrared imaging: the initial clinical experience. Urology. 2013;82(3):738–42.

    PubMed  Google Scholar 

  48. Kahramangil B, Berber E. The use of near-infrared fluorescence imaging in endocrine surgical procedures. J Surg Oncol. 2017;115(7):848–55.

    PubMed  Google Scholar 

  49. Pathak RA, Hemal AK. Intraoperative ICG-fluorescence imaging for robotic-assisted urologic surgery: current status and review of literature. Int Urol Nephrol. 2019;51(5):765–71.

    PubMed  Google Scholar 

  50. Colvin J, Zaidi N, Berber E. The utility of indocyanine green fluorescence imaging during robotic adrenalectomy. J Surg Oncol. 2016;114(2):153–6.

    PubMed  Google Scholar 

  51. Kahramangil B, Kose E, Berber E. Characterization of fluorescence patterns exhibited by different adrenal tumors: determining the indications for indocyanine green use in adrenalectomy. Surgery. 2018;164(5):972–7.

    PubMed  Google Scholar 

  52. Moore EC, Berber E. Fluorescence techniques in adrenal surgery. Gland Surg. 2019;8(Suppl 1):S22–S7.

    PubMed  PubMed Central  Google Scholar 

  53. George EI, Brand TC, LaPorta A, Marescaux J, Satava RM. Origins of robotic surgery: from skepticism to standard of care. JSLS. 2018;22(4)

    Google Scholar 

  54. Marescaux J, Leroy J, Gagner M, Rubino F, Mutter D, Vix M, et al. Transatlantic robot-assisted telesurgery. Nature. 2001;413(6854):379–80.

    CAS  PubMed  Google Scholar 

  55. Marescaux J, Leroy J, Rubino F, Smith M, Vix M, Simone M, et al. Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg. 2002;235(4):487–92.

    PubMed  PubMed Central  Google Scholar 

  56. Anvari M. Remote telepresence surgery: the Canadian experience. Surg Endosc. 2007;21(4):537–41.

    CAS  PubMed  Google Scholar 

  57. Börner Valdez L, Datta RR, Babic B, Müller DT, Bruns CJ, Fuchs HF. 5G mobile communication applications for surgery: an overview of the latest literature. Artif Intell Gastrointest Endosc. 2021;2(1):1–11.

    Google Scholar 

  58. Jell A, Vogel T, Ostler D, Marahrens N, Wilhelm D, Samm N, et al. 5th-Generation mobile communication: data highway for surgery 4.0. Surg Technol Int. 2019;35:36–42.

    PubMed  Google Scholar 

  59. Lacy AM, Bravo R, Otero-Pineiro AM, Pena R, De Lacy FB, Menchaca R, et al. 5G-assisted telementored surgery. Br J Surg. 2019;106(12):1576–9.

    CAS  PubMed  Google Scholar 

  60. Acemoglu A, Peretti G, Trimarchi M, Hysenbelli J, Krieglstein J, Geraldes A, et al. Operating from a distance: robotic vocal cord 5G telesurgery on a cadaver. Ann Intern Med. 2020;173(11):940–1.

    PubMed  Google Scholar 

  61. Zheng J, Wang Y, Zhang J, Guo W, Yang X, Luo L, et al. 5G ultra-remote robot-assisted laparoscopic surgery in China. Surg Endosc. 2020;34(11):5172–80.

    PubMed  Google Scholar 

  62. Tian W, Fan M, Zeng C, Liu Y, He D, Zhang Q. Telerobotic spinal surgery based on 5G network: the first 12 cases. Neurospine. 2020;17(1):114–20.

    PubMed  PubMed Central  Google Scholar 

  63. Orosco RK, Lurie B, Matsuzaki T, Funk EK, Divi V, Holsinger FC, et al. Compensatory motion scaling for time-delayed robotic surgery. Surg Endosc. 2021;35(6):2613–8.

    PubMed  Google Scholar 

  64. Panesar SS, Ashkan K. Surgery in space. Br J Surg. 2018;105(10):1234–43.

    CAS  PubMed  Google Scholar 

  65. Campbell MR, Kirkpatrick AW, Billica RD, Johnston SL, Jennings R, Short D, et al. Endoscopic surgery in weightlessness: the investigation of basic principles for surgery in space. Surg Endosc. 2001;15(12):1413–8.

    CAS  PubMed  Google Scholar 

  66. Leapman MS, Jones JA, Coutinho K, Sagalovich D, Garcia MM, Olsson CA, et al. Up and away: five decades of urologic investigation in microgravity. Urology. 2017;106:18–25.

    PubMed  Google Scholar 

  67. Doarn CR, Anvari M, Low T, Broderick TJ. Evaluation of teleoperated surgical robots in an enclosed undersea environment. Telemed J E Health. 2009;15(4):325–35.

    PubMed  Google Scholar 

  68. Haidegger T, Sandor J, Benyo Z. Surgery in space: the future of robotic telesurgery. Surg Endosc. 2011;25(3):681–90.

    PubMed  Google Scholar 

  69. Meara J, Leather A, Hagander L. Global Surgery 2030: evidence and solutions for achieving health, welfare, and economic development [published online April 21, 2015]. Lancet. 2015;

    Google Scholar 

  70. Gray WK, Day J, Briggs TWR, Wass JAH, Lansdown M. Volume-outcome relationship for adrenalectomy: analysis of an administrative dataset for the Getting It Right First Time Programme. Br J Surg. 2021;108(9):1112–9.

    CAS  PubMed  Google Scholar 

  71. Marescaux J, Soler L, Mutter D, Leroy J, Vix M, Koehl C, et al. Virtual university applied to telesurgery: from teleeducation to telemanipulation. Stud Health Technol Inform. 2000;70:195–201.

    CAS  PubMed  Google Scholar 

  72. Mutter D, Vix M, Dallemagne B, Perretta S, Leroy J, Marescaux J. WeBSurg: an innovative educational Web site in minimally invasive surgery--principles and results. Surg Innov. 2011;18(1):8–14.

    PubMed  Google Scholar 

  73. Sereno S, Mutter D, Dallemagne B, Smith CD, Marescaux J. Telementoring for minimally invasive surgical training by wireless robot. Surg Innov. 2007;14(3):184–91.

    CAS  PubMed  Google Scholar 

  74. Erridge S, Yeung DKT, Patel HRH, Purkayastha S. Telementoring of surgeons: a systematic review. Surg Innov. 2019;26(1):95–111.

    PubMed  Google Scholar 

  75. Feliciano DV, Delaney CP, Schauer P, Takanishi DM Jr, Alford LA, Medlin W, et al. Upgrading your surgical skills through preceptorship. J Am Coll Surg. 2021;233(3):487–93.

    PubMed  Google Scholar 

  76. Collins J, Akre O, Challacombe B, Karim O, Wiklund P. Robotic networks: delivering empowerment through integration. BJU Int. 2015;116(2):167–8.

    PubMed  Google Scholar 

  77. Cubano M, Poulose BK, Talamini MA, Stewart R, Antosek LE, Lentz R, et al. Long distance telementoring. A novel tool for laparoscopy aboard the USS Abraham Lincoln. Surg Endosc. 1999;13(7):673–8.

    CAS  PubMed  Google Scholar 

  78. Rosser JC Jr, Bell RL, Harnett B, Rodas E, Murayama M, Merrell R. Use of mobile low-bandwith telemedical techniques for extreme telemedicine applications. J Am Coll Surg. 1999;189(4):397–404.

    PubMed  Google Scholar 

  79. Wachs JP, Kirkpatrick AW, Tisherman SA. Procedural telementoring in rural, underdeveloped, and austere settings: origins, present challenges, and future perspectives. Annu Rev Biomed Eng. 2021;23:115–39.

    CAS  PubMed  Google Scholar 

  80. Fassnacht M, Dekkers OM, Else T, Baudin E, Berruti A, de Krijger R, et al. European Society of Endocrinology Clinical Practice Guidelines on the management of adrenocortical carcinoma in adults, in collaboration with the European Network for the Study of Adrenal Tumors. Eur J Endocrinol. 2018;179(4):G1–G46.

    CAS  PubMed  Google Scholar 

  81. Vrielink OM, Wevers KP, Kist JW, Borel Rinkes IHM, Hemmer PHJ, Vriens MR, et al. Laparoscopic anterior versus endoscopic posterior approach for adrenalectomy: a shift to a new golden standard? Langenbeck’s Arch Surg. 2017;402(5):767–73.

    CAS  Google Scholar 

  82. Miller JA, Kwon DS, Dkeidek A, Yew M, Hisham Abdullah A, Walz MK, et al. Safe introduction of a new surgical technique: remote telementoring for posterior retroperitoneoscopic adrenalectomy. ANZ J Surg. 2012;82(11):813–6.

    PubMed  Google Scholar 

  83. Brunt LM. SAGES Guidelines for minimally invasive treatment of adrenal pathology. Surg Endosc. 2013;27(11):3957–9.

    PubMed  Google Scholar 

  84. Treter S, Perrier N, Sosa JA, Roman S. Telementoring: a multi-institutional experience with the introduction of a novel surgical approach for adrenalectomy. Ann Surg Oncol. 2013;20(8):2754–8.

    PubMed  Google Scholar 

  85. Amato M, Eissa A, Puliatti S, Secchi C, Ferraguti F, Minelli M, et al. Feasibility of a telementoring approach as a practical training for transurethral enucleation of the benign prostatic hyperplasia using bipolar energy: a pilot study. World J Urol. 2021;39(9):3465–71.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Argonaute (MP4 42825 kb)

CholangioCA (MP4 52861 kb)

Kidney-child5 (MP4 95438 kb)

Clippino 3D AR RARP (MP4 133572 kb)

Clippino AR RAPN (MP4 171456 kb)

Robotic telementoring (MP4 145308 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seeliger, B., Collins, J.W., Porpiglia, F., Marescaux, J. (2022). The Role of Virtual Reality, Telesurgery, and Teleproctoring in Robotic Surgery. In: Wiklund, P., Mottrie, A., Gundeti, M.S., Patel, V. (eds) Robotic Urologic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-00363-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00363-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00362-2

  • Online ISBN: 978-3-031-00363-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics