Skip to main content

Anesthetics in Robotics

  • Chapter
  • First Online:
Robotic Urologic Surgery

Abstract

The widespread adoption of robotic surgery in the field of urology can be attributed to its many advantages, which include improved ergonomics, minimally invasive approach, and decreased length of hospital stay. Anesthetists are therefore required to have an understanding of the unique challenges associated with urological robotic surgery. Additionally, pre-operative screening and optimization allow for the identification and mitigation of patient-specific risk factors.

Common to most robotic surgery patients is the difficulty in managing the combined effects of pneumoperitoneum and the Trendelenburg position, both of which place additional strain on the cardiovascular and respiratory systems. These issues in addition to the most common anesthetic complications associated with robotic surgery are explored and the ways in which they can be prevented are discussed.

Another issue facing anesthetists is the limited access to the patient during robotic surgery. The lack of patient access demands the meticulous placement of monitoring equipment to ensure any deterioration in the patient is rapidly identified. In the event of a surgical or anesthetic emergency, all teams involved in the patient’s intraoperative care should be familiar with emergency undocking protocols. Members of the surgical and anesthetic teams are obliged to review their institutions local protocols to ensure emergency undocking is executed rapidly and safely.

Enhanced recovery after surgery (ERAS) aims to further accelerate the post-operative patient journey through procedure-specific guidelines. These guidelines influence the patient’s pre- and post-operative management and include the following aspects: patient education, choice of analgesia, diet, mobilization targets, and deep venous thrombosis prophylaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Juo Y-Y, Mantha A, Abiri A, Lin A, Dutson E. Diffusion of robotic-assisted laparoscopic technology across specialties: a national study from 2008 to 2013. Surg Endosc. 2018;32(3):1405–13.

    PubMed  Google Scholar 

  2. Souki FG, Rodriguez-Blanco YF, Polu SR, Eber S, Candiotti KA. Survey of anesthesiologists’ practices related to steep Trendelenburg positioning in the USA. BMC Anesthesiol. 2018;18(1):117.

    PubMed  PubMed Central  Google Scholar 

  3. Carey BM, Jones CN, Fawcett WJ. Anaesthesia for minimally invasive abdominal and pelvic surgery. BJA Educ. 2019;19(8):254–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Azhar RA, Bochner B, Catto J, Goh AC, Kelly J, Patel HD, et al. Enhanced recovery after urological surgery: a contemporary systematic review of outcomes, key elements, and research needs. Eur Urol. 2016;70(1):176–87.

    PubMed  PubMed Central  Google Scholar 

  5. Daneshmand S, Ahmadi H, Schuckman AK, Mitra AP, Cai J, Miranda G, et al. Enhanced recovery protocol after radical cystectomy for bladder cancer. J Urol. 2014;192(1):50–5.

    PubMed  Google Scholar 

  6. Awad H, Walker CM, Shaikh M, Dimitrova GT, Abaza R, O'Hara J. Anesthetic considerations for robotic prostatectomy: a review of the literature. J Clin Anesth. 2012;24(6):494–504.

    PubMed  Google Scholar 

  7. Fahy BG, Barnas GM, Nagle SE, Flowers JL, Njoku MJ, Agarwal M. Effects of Trendelenburg and reverse Trendelenburg postures on lung and chest wall mechanics. J Clin Anesth. 1996;8(3):236–44.

    CAS  PubMed  Google Scholar 

  8. Suh MK, Seong KW, Jung SH, Kim SS. The effect of pneumoperitoneum and Trendelenburg position on respiratory mechanics during pelviscopic surgery. Korean J Anesthesiol. 2010;59(5):329–34.

    PubMed  PubMed Central  Google Scholar 

  9. Lee JR. Anesthetic considerations for robotic surgery. Korean J Anesthesiol. 2014;66(1):3–11.

    PubMed  PubMed Central  Google Scholar 

  10. Berger JS, Alshaeri T, Lukula D, Dangerfield P. Anesthetic considerations for robot-assisted gynecologic and urology surgery. J Anesth Clin Res. 2013;4(8):345.

    Google Scholar 

  11. Sprung J, Whalley DG, Falcone T, Warner DO, Hubmayr RD, Hammel J. The impact of morbid obesity, pneumoperitoneum, and posture on respiratory system mechanics and oxygenation during laparoscopy. Anesth Analg. 2002;94(5):1345–50.

    PubMed  Google Scholar 

  12. Perrin M, Fletcher A. Laparoscopic abdominal surgery. Contin Educ Anaesth Crit Care Pain. 2004;4(4):107–10.

    Google Scholar 

  13. George AK, Wimhofer R, Viola KV, Pernegger M, Costamoling W, Kavoussi LR, et al. Utilization of a novel valveless trocar system during robotic-assisted laparoscopic prostatectomy. World J Urol. 2015;33(11):1695–9.

    PubMed  Google Scholar 

  14. Rohloff M, Cicic A, Christensen C, Maatman TK, Lindberg J, Maatman TJ. Reduction in postoperative ileus rates utilizing lower pressure pneumoperitoneum in robotic-assisted radical prostatectomy. J Robot Surg. 2019;13(5):671–4.

    PubMed  Google Scholar 

  15. Rohloff M, Peifer G, Shakuri-Rad J, Maatman TJ. The impact of low pressure pneumoperitoneum in robotic assisted radical prostatectomy: a prospective, randomized, double blinded trial. World J Urol. 2021;39(7):2469–74.

    CAS  PubMed  Google Scholar 

  16. Hayden P, Cowman S. Anaesthesia for laparoscopic surgery. Contin Educ Anaesth Crit Care Pain. 2011;11(5):177–80.

    Google Scholar 

  17. Hong JY, Kim JY, Choi YD, Rha KH, Yoon SJ, Kil HK. Incidence of venous gas embolism during robotic-assisted laparoscopic radical prostatectomy is lower than that during radical retropubic prostatectomy. Br J Anaesth. 2010;105(6):777–81.

    CAS  PubMed  Google Scholar 

  18. Danic MJ, Chow M, Alexander G, Bhandari A, Menon M, Brown M. Anesthesia considerations for robotic-assisted laparoscopic prostatectomy: a review of 1,500 cases. J Robot Surg. 2007;1(2):119–23.

    PubMed  PubMed Central  Google Scholar 

  19. Irvine M, Patil V. Anaesthesia for robot-assisted laparoscopic surgery. Contin Educ Anaesth Crit Care Pain. 2009;9(4):125–9.

    Google Scholar 

  20. Song JB, Vemana G, Mobley JM, Bhayani SB. The second “time-out”: a surgical safety checklist for lengthy robotic surgeries. Patient Saf Surg. 2013;7(1):19.

    PubMed  PubMed Central  Google Scholar 

  21. Aggarwal D, Bora GS, Mavuduru RS, Jangra K, Sharma AP, Gupta S, et al. Robot-assisted pelvic urologic surgeries: is it feasible to perform under reduced tilt? J Robot Surg. 2020.

    Google Scholar 

  22. Raz O, Boesel TW, Arianayagam M, Lau H, Vass J, Huynh CC, et al. The effect of the modified Z trendelenburg position on intraocular pressure during robotic assisted laparoscopic radical prostatectomy: a randomized, controlled study. J Urol. 2015;193(4):1213–9.

    PubMed  Google Scholar 

  23. Mills JT, Burris MB, Warburton DJ, Conaway MR, Schenkman NS, Krupski TL. Positioning injuries associated with robotic assisted urological surgery. J Urol. 2013;190(2):580–4.

    PubMed  Google Scholar 

  24. Warner MA, Warner DO, Harper CM, Schroeder DR, Maxson PM. Lower extremity neuropathies associated with lithotomy positions. Anesthesiology. 2000;93(4):938–42.

    CAS  PubMed  Google Scholar 

  25. Litwiller JP, Wells RE Jr, Halliwill JR, Carmichael SW, Warner MA. Effect of lithotomy positions on strain of the obturator and lateral femoral cutaneous nerves. Clin Anat. 2004;17(1):45–9.

    PubMed  Google Scholar 

  26. Koç G, Tazeh NN, Joudi FN, Winfield HN, Tracy CR, Brown JA. Lower extremity neuropathies after robot-assisted laparoscopic prostatectomy on a split-leg table. J Endourol. 2012;26(8):1026–9.

    PubMed  Google Scholar 

  27. Maerz DA, Beck LN, Sim AJ, Gainsburg DM. Complications of robotic-assisted laparoscopic surgery distant from the surgical site. Br J Anaesth. 2017;118(4):492–503.

    CAS  PubMed  Google Scholar 

  28. Devarajan J, Byrd JB, Gong MC, Wood HM, O’Hara J, Weingarten TN, et al. Upper and middle trunk brachial plexopathy after robotic prostatectomy. Anesth Analg. 2012;115(4):867–70.

    PubMed  Google Scholar 

  29. Practice advisory for the prevention of perioperative peripheral neuropathies 2018: an updated report by the American society of anesthesiologists task force on prevention of perioperative peripheral neuropathies. Anesthesiology. 2018;128(1):11–26.

    Google Scholar 

  30. Capmas P, Suarthana E, Larouche M. Conversion rate of laparoscopic or robotic to open sacrocolpopexy: are there associated factors and complications? Int Urogynecol J. 2021;32(8):2249–56.

    PubMed  Google Scholar 

  31. Ko OS, Weiner AB, Smith ND, Meeks JJ. Rates and predictors of conversion to open surgery during minimally invasive radical cystectomy. J Endourol. 2018;32(6):488–94.

    PubMed  Google Scholar 

  32. O’Sullivan OE, O’Sullivan S, Hewitt M, O’Reilly BA. Da Vinci robot emergency undocking protocol. J Robot Surg. 2016;10(3):251–3.

    PubMed  Google Scholar 

  33. Coughlin GD, Yaxley JW, Chambers SK, Occhipinti S, Samaratunga H, Zajdlewicz L, et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: 24-month outcomes from a randomised controlled study. Lancet Oncol. 2018;19(8):1051–60.

    PubMed  Google Scholar 

  34. Collins JW, Adding C, Hosseini A, Nyberg T, Pini G, Dey L, et al. Introducing an enhanced recovery programme to an established totally intracorporeal robot-assisted radical cystectomy service. Scand J Urol. 2016;50(1):39–46.

    PubMed  Google Scholar 

  35. Zhao Y, Zhang S, Liu B, Li J, Hong H. Clinical efficacy of enhanced recovery after surgery (ERAS) program in patients undergoing radical prostatectomy: a systematic review and meta-analysis. World J Surg Oncol. 2020;18(1):131.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Caprini JA. Thrombosis risk assessment as a guide to quality patient care. Dis Mon. 2005;51(2-3):70–8.

    PubMed  Google Scholar 

  37. Matar CF, Kahale LA, Hakoum MB, Tsolakian IG, Etxeandia-Ikobaltzeta I, Yosuico VE, et al. Anticoagulation for perioperative thromboprophylaxis in people with cancer. Cochrane Database Syst Rev. 2018;7(7):Cd009447.

    PubMed  Google Scholar 

  38. Venclauskas L, Maleckas A, Arcelus JI, Force ftEVGT. European guidelines on perioperative venous thromboembolism prophylaxis: surgery in the obese patient. Eur J Anaesthesiol. 2018;35(2):147–53.

    PubMed  Google Scholar 

  39. Felder S, Rasmussen MS, King R, Sklow B, Kwaan M, Madoff R, et al. Prolonged thromboprophylaxis with low molecular weight heparin for abdominal or pelvic surgery. Cochrane Database Syst Rev. 2019;8(8):Cd004318.

    PubMed  Google Scholar 

  40. Lyman GH, Carrier M, Ay C, Di Nisio M, Hicks LK, Khorana AA, et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: prevention and treatment in patients with cancer. Blood Adv. 2021;5(4):927–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pariser JJ, Pearce SM, Anderson BB, Packiam VT, Prachand VN, Smith ND, et al. Extended duration enoxaparin decreases the rate of venous thromboembolic events after radical cystectomy compared to inpatient only subcutaneous heparin. J Urol. 2017;197(2):302–7.

    CAS  PubMed  Google Scholar 

  42. Venclauskas L, Llau JV, Jenny J-Y, Kjaersgaard-Andersen P, Jans Ø. Force ftEVGT. European guidelines on perioperative venous thromboembolism prophylaxis: day surgery and fast-track surgery. Eur J Anaesthesiol. 2018;35(2):134–8.

    PubMed  Google Scholar 

  43. Pournajafian A, Ghodraty MR, Shafighnia S, Rokhtabnak F, Khatibi A, Tavoosian S, et al. The effect of intravesical diluted bupivacaine on catheter-related bladder discomfort in young and middle-aged male patients during postanaesthetic recovery. Turk J Anaesthesiol Reanim. 2020;48(6):454–9.

    PubMed  PubMed Central  Google Scholar 

  44. Fuller A, Vanderhaeghe L, Nott L, Martin PR, Pautler SE. Intravesical ropivacaine as a novel means of analgesia post-robot-assisted radical prostatectomy: a randomized, double-blind, placebo-controlled trial. J Endourol. 2013;27(3):313–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thanigasalam, R., Makary, J., Leslie, S., Downey, R., Paleologos, M., Irons, J. (2022). Anesthetics in Robotics. In: Wiklund, P., Mottrie, A., Gundeti, M.S., Patel, V. (eds) Robotic Urologic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-00363-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00363-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00362-2

  • Online ISBN: 978-3-031-00363-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics