Skip to main content

Robot-Assisted Intracorporeal Neobladder: The Karolinska Standardized Technique

  • Chapter
  • First Online:
Robotic Urologic Surgery

Abstract

Radical cystectomy with extended pelvic lymphadenectomy (ePLND) and urinary diversion still represents the gold standard treatment for muscle invasive bladder cancer and high-risk bladder cancer unresponsive to intravesical treatments. Irrespective of surgical approach RC remains a complex multistep surgery, being associated with a high rate of complications [Stenzl et al. (Eur Urol 59:1009-1, 2011), Collins et al. (Scand J Urol. 50(1):39–46, 2016)]. With the purpose of further reducing morbidity, minimally invasive approaches have been described, and the 2020 EAU guidelines [Witjes et al. (Eur Urol 79:82, 2021)] consider robot-assisted radical cystectomy (RARC) as a viable alternative to open radical cystectomy (ORC). Concluding current evidence indicates RARC has longer operative time (1–1.5 h) and major costs but shorter length of hospital stay (1–1.5 days) and less blood loss compared to ORC [Tang et al. (Eur J Surg Oncol, 2014)]. Surgeons’ experience and institutional volume are considered the key factor for outcome of both RARC and ORC [Dell’Oglio et al. (Eur Urol Focus 7(2):352–358, 2021)]. Laparoscopic radical cystectomy never gained wide acceptance in the urological community due to long operative time and the technical difficulties related to both ePLND and urinary diversion reconfiguration. With the introduction of robot-assisted laparoscopic surgery, RARC has emerged as a more viable alternative to both open and laparoscopic approaches to radical cystectomy [Collins et al. (Eur Urol 64:654–63, 2013), Hosseini et al. (BJU Int 126(4):464–471, 2020)].

To date, the RARC experience is increasing worldwide, minimizing surgical insult, and aiming to result in reductions in postoperative morbidity while offering improved ergonomics for the surgeon [Yu et al. (Surg Endosc 31(2):877–886, 2017)]. Several meta-analyses have demonstrated that RARC decreases blood loss and reduces overall complication rates, resulting in reduced transfusion rates, shorter time to normal diet, and length of stay [Tang et al. (Eur J Surg Oncol, 2014), Li et al. (Cancer Treat Rev 39(6):551–60, 2013)], without compromising oncologic safety as compared to open surgery [Snow-Lisy et al. (Eur Urol 65(1):193–200, 2014)]. Several urinary diversions have been described, but only limited randomized clinical trials performed by few super-specialized tertiary referral centers have demonstrated the advantages offered by intracorporeal urinary diversion (ICUD). The potential advantages of a complete intracorporeal procedure are less intraoperative blood loss, decreased bowel manipulation and exposure, reduced insensible losses, decreased morbidity from smaller incisions, reduced postoperative analgesic requirements, shorter hospital stay, and earlier return to normal activities [Hosseini et al. (BJU Int 126(4):464–471, 2020)].

In this paper we describe our standardized approach with modifications to technique for intracorporeal neobladder formation performed since December 2003 [Collins et al. (Eur Urol 64:654–63, 2013)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

e-PLND:

Extended pelvic lymph node dissection

ERP:

Enhanced recovery protocol

ICUD:

Intra-corporeal urinary diversion

RARC:

Robot-assisted radical cystectomy

References

  1. Stenzl A, Cowan NC, De Santis M, et al. Treatment of muscle-invasive and metastatic bladder cancer: update of the EAU Guidelines. Eur Urol. 2011;59:1009–1. https://doi.org/10.1016/j.eururo.2011.03.023.

    Article  CAS  PubMed  Google Scholar 

  2. Collins JW, Adding C, Hosseini A, Nyberg T, Pini G, Dey L, Wiklund PN. Introducing an enhanced recovery programme to an established totally intracorporeal robot-assisted radical cystectomy service. Scand J Urol. 2016;50(1):39–46. https://doi.org/10.3109/21681805.2015.1076514. Epub 2015 Aug 25.

    Article  PubMed  Google Scholar 

  3. Witjes JA, Bruins HM, Cathomas R, Compérat E, Cowan NC, Efstathiou JA, Fietkau R, Gakis G, Hernández V, Lorch A, Milowsky MI, Ribal MJ, Thalmann GN, van der Heijden AG, Veskimäe E. European Association of Urology Guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 Guidelines. Eur Urol. 2021;79:82. https://uroweb.org/guideline/bladder-cancer-muscle-invasive-and-metastatic

    Article  CAS  PubMed  Google Scholar 

  4. Tang K, Xia D, Li H, Guan W, Guo X, Hu Z, Ma X, Zhang X, Xu H, Ye Z. Robotic vs. open radical cystectomy in bladder cancer: a systematic review and meta-analysis. Eur J Surg Oncol. 2014;

    Google Scholar 

  5. Dell’Oglio P, Mazzone E, Lambert E, Vollemaere J, Goossens M, Larcher A, Van Der Jeugt J, Devos G, Poelaert F, Uvin P, Collins J, De Naeyer G, Schatteman P, D’Hondt F, Mottrie A. The effect of surgical experience on perioperative and oncological outcomes after robot-assisted radical cystectomy with intracorporeal urinary diversion: evidence from a referral centre with extensive experience in robotic surgery. Eur Urol Focus. 2021;7(2):352–8. https://doi.org/10.1016/j.euf.2020.01.016.

    Article  PubMed  Google Scholar 

  6. Collins JW, Tyritzis S, Nyberg T, Schumacher M, Laurin O, Khazaeli D, et al. Robot-assisted radical cystectomy: description of an evolved approach to radical cystectomy. Eur Urol. 2013;64:654–63.

    Article  PubMed  Google Scholar 

  7. Hosseini A, Mortezavi A, Sjöberg S, Laurin O, Adding C, Collins J, Wiklund PN. Robot-assisted intracorporeal orthotopic bladder substitution after radical cystectomy: perioperative morbidity and oncological outcomes – a single-institution experience. BJU Int. 2020;126(4):464–71. https://doi.org/10.1111/bju.15112. Epub 2020 Jun 5.

    Article  PubMed  Google Scholar 

  8. Yu D, Dural C, Morrow MM, et al. Intraoperative workload in robotic surgery assessed by wearable motion tracking sensors and questionnaires. Surg Endosc. 2017;31(2):877–86.

    Article  PubMed  Google Scholar 

  9. Li K, Lin T, Fan X, Xu K, Bi L, Duan Y, Zhou Y, Yu M, Li J, Huang J. Systematic review and meta-analysis of comparative studies reporting early outcomes after robot-assisted radical cystectomy versus open radical cystectomy. Cancer Treat Rev. 2013;39(6):551–60.

    Article  PubMed  Google Scholar 

  10. Snow-Lisy DC, Campbell SC, Gill IS, Hernandez AV, Fergany A, Kaouk J, Georges-Pascal Haberw-Lisy DC, Campbell SC, Gill IS, Hernandez AV, Fergany A, Kaouk J, Haber. Robotic and laparoscopic radical cystectomy for bladder cancer: long-term oncologic outcomes. Eur Urol. 2014;65(1):193–200. https://doi.org/10.1016/j.eururo.2013.08.021.

    Article  PubMed  Google Scholar 

  11. Collins JW, Patel H, Adding C, et al. Enhanced recovery after robot-assisted radical cystectomy: EAU Robotic Urology Section Scientific Working Group Consensus View. Eur Urol. 2016;70(4):649–60.

    Article  PubMed  Google Scholar 

  12. Brooks NA, Kokorovic A, McGrath JS, Kassouf W, Collins JW, Black PC, Douglas J, Djaladat H, Daneshmand S, Catto JWF, Kamat AM, Williams SB. Critical analysis of quality of life and cost-effectiveness of enhanced recovery after surgery (ERAS) for patient’s undergoing urologic oncology surgery: a systematic review. World J Urol. 2020. https://doi.org/10.1007/s00345-020-03341-6.

  13. Rocco B, Luciani LG, Collins J, Sanchez-Salas R, Adding C, Mattevi D, Hosseini A, Wiklund P. Posterior reconstruction during robotic-assisted radical cystectomy with intracorporeal orthotopic ileal neobladder: description and outcomes of a simple step. J Robotic Surg. 2021;15:355–61. https://doi.org/10.1007/s11701-020-01108-0.

    Article  Google Scholar 

  14. Van Velthoven RF, Ahlering TE, Peltier A, Skarecky DW, Clayman RV. Technique for laparoscopic running urethrovesical anastomosis:the single knot method. Urology. 2003;61(4):699–702.

    Article  PubMed  Google Scholar 

  15. Wiklund NP, Poulakis V. Robotic neobladder. BJU Int. 2011;107(9):1514–37.

    Article  PubMed  Google Scholar 

  16. Hosseini A, Dey L, Laurin O, Adding C, Hoijer J, Ebbing J, Collins JW. Ureteric stricture rates and management after robot-assisted radical cystectomy: a single-centre observational study. Scand J Urol. 2018;52(4):244–8.

    Article  PubMed  Google Scholar 

  17. Hosseini A, Ebbing J, Collins J. Clinical outcomes of robot-assisted radical cystectomy and continent urinary diversion. Scand J Urol. 2019;53(2–3):81–8. https://doi.org/10.1080/21681805.2019.1598486.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Collins, J.W., Hosseini, A., Wiklund, P. (2022). Robot-Assisted Intracorporeal Neobladder: The Karolinska Standardized Technique. In: Wiklund, P., Mottrie, A., Gundeti, M.S., Patel, V. (eds) Robotic Urologic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-00363-9_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00363-9_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00362-2

  • Online ISBN: 978-3-031-00363-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics