Skip to main content

Technical Advances in Robotic Renal Surgery

  • Chapter
  • First Online:
Robotic Urologic Surgery

Abstract

Surgical techniques for robotic renal surgery are driven by the aims of simplifying the most challenging surgical steps, maximizing functional and oncologic outcomes, and consistently pushing the envelope on possibilities. Over the past several years, not only we have seen an emergence in innovation in surgical technique and robotic platforms, we also note an integration of a variety of imaging techniques. Thanks to advances in imaging technology and surgical methods, surgeons can now contemplate partial nephrectomy in patients who were previously thought to be impossible candidates for nephron-sparing surgery. Recent studies have concentrated on integrating the architecture of renal masses and their vasculature to improve surgical planning, combining imaging and hilar clamping techniques and introducing a single-port robotic platform. The innovations introduced in the field of robotic renal surgery have shown substantial improvements in preoperative planning and intraoperative guidance. Moreover, new surgical platforms have recently appeared on the market showing encouraging results. With developing robotic expertise and new implementations, it is plausible that practicing urologists will continue to push the boundaries in nephron preservation and complication-free recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ozkara H, Watson LR. Laparoscopic surgery in urology. Int Urol Nephrol. 1992;24:461–4.

    CAS  PubMed  Google Scholar 

  2. El Sherbiny A, Eissa A, Ghaith A, Morini E, Marzotta L, Sighinolfi MC, et al. Training in urological robotic surgery. Future perspectives. Arch Esp Urol. 2018;71:97–107.

    PubMed  Google Scholar 

  3. Kockerling F. Robotic vs. standard laparoscopic technique - what is better? Front Surg. 2014;1:15.

    PubMed  PubMed Central  Google Scholar 

  4. Binder J, Kramer W. Robotically-assisted laparoscopic radical prostatectomy. BJU Int. 2001;87:408–10.

    CAS  PubMed  Google Scholar 

  5. Gettman M, Rivera M. Innovations in robotic surgery. Curr Opin Urol. 2016;26:271–6.

    PubMed  Google Scholar 

  6. Porpiglia F, Bertolo R, Checcucci E, Amparore D, Autorino R, Dasgupta P, et al. Development and validation of 3D printed virtual models for robot-assisted radical prostatectomy and partial nephrectomy: urologists’ and patients’ perception. World J Urol. 2018;36:201–7.

    PubMed  Google Scholar 

  7. Bertolo R, Autorino R, Fiori C, Amparore D, Checcucci E, Mottrie A, et al. Expanding the indications of robotic partial nephrectomy for highly complex renal tumors: Urologists' perception of the impact of hyperaccuracy three-dimensional reconstruction. J Laparoendosc Adv Surg Tech A. 2019;29:233–9.

    PubMed  Google Scholar 

  8. Porpiglia F, Amparore D, Checcucci E, Manfredi M, Stura I, Migliaretti G, et al. Three-dimensional virtual imaging of renal tumours: a new tool to improve the accuracy of nephrometry scores. BJU Int. 2019;124:945–54.

    PubMed  Google Scholar 

  9. von Rundstedt FC, Scovell JM, Agrawal S, Zaneveld J, Link RE. Utility of patient-specific silicone renal models for planning and rehearsal of complex tumour resections prior to robot-assisted laparoscopic partial nephrectomy. BJU Int. 2017;119:598–604.

    Google Scholar 

  10. Porpiglia F, Fiori C, Checcucci E, Amparore D, Bertolo R. Hyperaccuracy three-dimensional reconstruction is able to maximize the efficacy of selective clamping during robot-assisted partial nephrectomy for complex renal masses. Eur Urol. 2018;74:651–60.

    PubMed  Google Scholar 

  11. Huang Q, Gu L, Zhu J, Peng C, Du S, Liu Q, et al. A three-dimensional, anatomy-based nephrometry score to guide nephron-sparing surgery for renal sinus tumors. Cancer. 2020;126(Suppl 9):2062–72.

    PubMed  Google Scholar 

  12. Rocco B, Sighinolfi MC, Menezes AD, Eissa A, Inzillo R, Sandri M, et al. Three-dimensional virtual reconstruction with DocDo, a novel interactive tool to score renal mass complexity. BJU Int. 2020;125:761–2.

    PubMed  Google Scholar 

  13. De Backer SV, C. Van Praet, S. Vandenbulcke, M. Lejoly, S Vanderschelden, C. Debbaut, A Mottrie, K. Decaestecker Selective arterial clamping in robot assisted partial nephrectomy using 3D nearest distance perfusion zones. J Endourol 2021. 35(9):1357-1364

    Google Scholar 

  14. Antonelli A, Veccia A, Palumbo C, Peroni A, Mirabella G, Cozzoli A, et al. Holographic reconstructions for preoperative planning before partial nephrectomy: a head-to-head comparison with standard CT scan. Urol Int. 2019;102:212–7.

    PubMed  Google Scholar 

  15. Porpiglia F, Checcucci E, Amparore D, Piramide F, Volpi G, Granato S, et al. Three-dimensional augmented reality robot-assisted partial nephrectomy in case of complex Tumours (PADUA ≥ 10): a new intraoperative tool overcoming the ultrasound guidance. Eur Urol. 2020;78:229–38.

    PubMed  Google Scholar 

  16. Porpiglia F, Checcucci E, Amparore D, Autorino R, Piana A, Bellin A, et al. Augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HA3D) technology: a radiological and pathological study. BJU Int. 2019;123:834–45.

    PubMed  Google Scholar 

  17. Porpiglia F, Checcucci E, Amparore D, Manfredi M, Massa F, Piazzolla P, et al. Three-dimensional elastic augmented-reality robot-assisted radical prostatectomy using hyperaccuracy three-dimensional reconstruction technology: a step further in the identification of capsular involvement. Eur Urol. 2019;76:505–14.

    PubMed  Google Scholar 

  18. Canda AE, Aksoy SF, Altinmakas E, Koseoglu E, Falay O, Kordan Y, et al. Virtual reality tumor navigated robotic radical prostatectomy by using three-dimensional reconstructed multiparametric prostate MRI and 68Ga-PSMA PET/CT images: a useful tool to guide the robotic surgery? BJUI Compass. 2020;1:108–15.

    PubMed  PubMed Central  Google Scholar 

  19. Kobayashi S, Cho B, Huaulme A, Tatsugami K, Honda H, Jannin P, et al. Assessment of surgical skills by using surgical navigation in robot-assisted partial nephrectomy. Int J Comput Assist Radiol Surg. 2019;14:1449–59.

    PubMed  Google Scholar 

  20. Mehralivand S, Kolagunda A, Hammerich K, Sabarwal V, Harmon S, Sanford T, et al. A multiparametric magnetic resonance imaging-based virtual reality surgical navigation tool for robotic-assisted radical prostatectomy. Turk J Urol. 2019;45:357–65.

    PubMed  PubMed Central  Google Scholar 

  21. Gunelli R, Fiori M, Salaris C, Salomone U, Urbinati M, Vici A, et al. The role of intraoperative ultrasound in small renal mass robotic enucleation. Arch Ital Urol Androl. 2016;88:311–3.

    PubMed  Google Scholar 

  22. Alenezi A, Motiwala A, Eves S, Gray R, Thomas A, Meiers I, et al. Robotic assisted laparoscopic partial nephrectomy using contrast-enhanced ultrasound scan to map renal blood flow. Int J Med Robot. 2017;13:e1738.

    PubMed  Google Scholar 

  23. Meershoek P, van Oosterom MN, Simon H, Mengus L, Maurer T, van Leeuwen PJ, et al. Robot-assisted laparoscopic surgery using DROP-IN radioguidance: first-in-human translation. Eur J Nucl Med Mol Imaging. 2019;46:49–53.

    CAS  PubMed  Google Scholar 

  24. Maurer T, Robu S, Schottelius M, Schwamborn K, Rauscher I, van den Berg NS, et al. (99m)Technetium-based prostate-specific membrane antigen-radioguided surgery in recurrent prostate cancer. Eur Urol. 2019;75:659–66.

    PubMed  Google Scholar 

  25. Gadus L, Kocarek J, Chmelik F, Matejkova M, Heracek J. Robotic partial nephrectomy with indocyanine green fluorescence navigation. Contrast Media Mol Imaging. 2020;2020:1287530.

    PubMed  PubMed Central  Google Scholar 

  26. Diana P, Buffi NM, Lughezzani G, Dell'Oglio P, Mazzone E, Porter J, et al. The role of intraoperative indocyanine green in robot-assisted partial nephrectomy: results from a large, multi-institutional series. Eur Urol. 2020;78:743–9.

    PubMed  Google Scholar 

  27. Mattevi D, Luciani LG, Mantovani W, Cai T, Chiodini S, Vattovani V, et al. Fluorescence-guided selective arterial clamping during RAPN provides better early functional outcomes based on renal scan compared to standard clamping. J Robot Surg. 2019;13:391–6.

    PubMed  Google Scholar 

  28. Simone G, Tuderti G, Anceschi U, Ferriero M, Costantini M, Minisola F, et al. “Ride the green light”: indocyanine green-marked off-clamp robotic partial nephrectomy for totally endophytic renal masses. Eur Urol. 2019;75:1008–14.

    PubMed  Google Scholar 

  29. Tuderti G, Brassetti A, Minisola F, Anceschi U, Ferriero M, Leonardo C, et al. Transnephrostomic Indocyanine green-guided robotic ureteral reimplantation for benign ureteroileal strictures after robotic cystectomy and intracorporeal neobladder: step-by-step surgical technique, perioperative and functional outcomes. J Endourol. 2019;33:823–8.

    PubMed  Google Scholar 

  30. Lee Z, Moore B, Giusto L, Eun DD. Use of indocyanine green during robot-assisted ureteral reconstructions. Eur Urol. 2015;67:291–8.

    PubMed  Google Scholar 

  31. Lopez A, Zlatev DV, Mach KE, Bui D, Liu JJ, Rouse RV, et al. Intraoperative optical biopsy during robotic assisted radical prostatectomy using confocal endomicroscopy. J Urol. 2016;195:1110–7.

    PubMed  Google Scholar 

  32. Puliatti S, Bertoni L, Pirola GM, Azzoni P, Bevilacqua L, Eissa A, et al. Ex vivo fluorescence confocal microscopy: the first application for real-time pathological examination of prostatic tissue. BJU Int. 2019;124:469–76.

    PubMed  Google Scholar 

  33. Rocco B, Sighinolfi MC, Bertoni L, Spandri V, Puliatti S, Eissa A, et al. Real-time assessment of surgical margins during radical prostatectomy: a novel approach that uses fluorescence confocal microscopy for the evaluation of peri-prostatic soft tissue. BJU Int. 2020;125:487–9.

    PubMed  Google Scholar 

  34. Pinto M, Zorn KC, Tremblay JP, Desroches J, Dallaire F, Aubertin K, et al. Integration of a Raman spectroscopy system to a robotic-assisted surgical system for real-time tissue characterization during radical prostatectomy procedures. J Biomed Opt. 2019;24:1–10.

    PubMed  Google Scholar 

  35. Bhandari M, Nallabasannagari AR, Reddiboina M, Porter JR, Jeong W, Mottrie A, et al. Predicting intra-operative and postoperative consequential events using machine-learning techniques in patients undergoing robot-assisted partial nephrectomy: a Vattikuti collective quality initiative database study. BJU Int. 2020;126:350–8.

    PubMed  Google Scholar 

  36. Perkins SQ, Giffen ZC, Buck BJ, Ortiz J, Sindhwani P, Ekwenna O. Initial experience with the use of a robotic stapler for robot-assisted donor nephrectomy. J Endourol. 2018;32:1054–7.

    PubMed  Google Scholar 

  37. Canda AE, Ozkan A, Arpali E, Koseoglu E, Kiremit MC, Kordan Y, et al. Robotic assisted partial nephrectomy with cold ischemia applying ice pieces and intraoperative frozen section evaluation of the mass: complete replication of open approach with advantages of minimally invasive surgery. Cent Eur J Urol. 2020;73:234–5.

    Google Scholar 

  38. Steinberg RL, Johnson BA, Meskawi M, Gettman MT, Cadeddu JA. Magnet-assisted robotic prostatectomy using the da Vinci SP robot: an initial case series. J Endourol. 2019;33:829–34.

    PubMed  Google Scholar 

  39. Fang AM, Saidian A, Magi-Galluzzi C, Nix JW, Rais-Bahrami S. Single-port robotic partial and radical nephrectomies for renal cortical tumors: initial clinical experience. J Robot Surg. 2020;14:773–80.

    PubMed  Google Scholar 

  40. Shukla D, Small A, Mehrazin R, Palese M. Single-port robotic-assisted partial nephrectomy: initial clinical experience and lessons learned for successful outcomes. J Robot Surg. 2021;15:293–8.

    PubMed  Google Scholar 

  41. Dobbs RW, Halgrimson WR, Madueke I, Vigneswaran HT, Wilson JO, Crivellaro S. Single-port robot-assisted laparoscopic radical prostatectomy: initial experience and technique with the da Vinci((R)) SP platform. BJU Int. 2019;124:1022–7.

    CAS  PubMed  Google Scholar 

  42. Morelli L, Palmeri M, Simoncini T, Cela V, Perutelli A, Selli C, et al. A prospective, single-arm study on the use of the da Vinci(R) table motion with the Trumpf TS7000dV operating table. Surg Endosc. 2018;32:4165–72.

    PubMed  Google Scholar 

  43. Fulla J, Small A, Kaplan-Marans E, Palese M. Magnetic-assisted robotic and laparoscopic renal surgery: initial clinical experience with the Levita magnetic surgical system. J Endourol. 2020;34:1242–6.

    PubMed  PubMed Central  Google Scholar 

  44. Na JC, Lee HH, Yoon YE, Jang WS, Choi YD, Rha KH, et al. True single-site partial nephrectomy using the SP surgical system: feasibility, comparison with the Xi single-site platform, and step-by-step procedure guide. J Endourol. 2020;34:169–74.

    PubMed  Google Scholar 

  45. Kaouk J, Aminsharifi A, Sawczyn G, Kim S, Wilson CA, Garisto J, et al. Single-port robotic urological surgery using purpose-built single-port surgical system: single-institutional experience with the first 100 cases. Urology. 2020;140:77–84.

    PubMed  Google Scholar 

  46. Thomas BC, Slack M, Hussain M, Barber N, Pradhan A, Dinneen E, et al. Preclinical evaluation of the versius surgical system, a new robot-assisted surgical device for use in minimal access renal and prostate surgery. Eur Urol Focus. 2021;7:444–52.

    PubMed  Google Scholar 

  47. Chang KD, Abdel Raheem A, Choi YD, Chung BH, Rha KH. Retzius-sparing robot-assisted radical prostatectomy using the Revo-i robotic surgical system: surgical technique and results of the first human trial. BJU Int. 2018;122:441–8.

    CAS  PubMed  Google Scholar 

  48. Samalavicius NE, Janusonis V, Siaulys R, Jasenas M, Deduchovas O, Venckus R, et al. Robotic surgery using Senhance((R)) robotic platform: single center experience with first 100 cases. J Robot Surg. 2020;14:371–6.

    PubMed  Google Scholar 

  49. Chaddha U, Kovacs SP, Manley C, Hogarth DK, Cumbo-Nacheli G, Bhavani SV, et al. Robot-assisted bronchoscopy for pulmonary lesion diagnosis: results from the initial multicenter experience. BMC Pulm Med. 2019;19:243.

    PubMed  PubMed Central  Google Scholar 

  50. Yi B, Wang G, Li J, Jiang J, Son Z, Su H, et al. The first clinical use of domestically produced Chinese minimally invasive surgical robot system “Micro Hand S”. Surg Endosc. 2016;30:2649–55.

    PubMed  Google Scholar 

  51. Rassweiler JJ, Autorino R, Klein J, Mottrie A, Goezen AS, Stolzenburg JU, et al. Future of robotic surgery in urology. BJU Int. 2017;120:822–41.

    PubMed  Google Scholar 

  52. Walshe K, Offen N. A very public failure: lessons for quality improvement in healthcare organisations from the Bristol Royal Infirmary. Qual Health Care. 2001;10:250–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Van Der Weyden MB. The Bundaberg hospital scandal: the need for reform in Queensland and beyond. Med J Aust. 2005;183:284–5.

    PubMed  Google Scholar 

  54. Pradarelli JC, Thornton JP, Dimick JB. Who is responsible for the safe introduction of new surgical technology?: an important legal precedent from the da Vinci surgical system trials. JAMA Surg. 2017;152:717–8.

    PubMed  Google Scholar 

  55. Nik-Ahd F, Souders CP, Zhao H, Houman J, McClelland L, Chughtai B, et al. Robotic urologic surgery: trends in litigation over the last decade. J Robot Surg. 2019;13:729–34.

    PubMed  PubMed Central  Google Scholar 

  56. Mazzone E, Puliatti S, Amato M, Bunting B, Rocco B, Montorsi F, et al. A systematic review and meta-analysis on the impact of proficiency-based progression simulation training on performance outcomes. Ann Surg. 2020;274(2):281–9.

    Google Scholar 

  57. Gallagher AG, Ritter EM, Champion H, Higgins G, Fried MP, Moses G, et al. Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Ann Surg. 2005;241:364–72.

    PubMed  PubMed Central  Google Scholar 

  58. Gallagher AG, Cates CU. Approval of virtual reality training for carotid stenting: what this means for procedural-based medicine. JAMA. 2004;292:3024–6.

    CAS  PubMed  Google Scholar 

  59. Liebig T, Holtmannspotter M, Crossley R, Lindkvist J, Henn P, Lonn L, et al. Metric-based virtual reality simulation: a paradigm shift in training for mechanical thrombectomy in acute stroke. Stroke. 2018;49:e239–e42.

    PubMed  Google Scholar 

  60. Satava RM, Stefanidis D, Levy JS, Smith R, Martin JR, Monfared S, et al. Proving the effectiveness of the fundamentals of robotic surgery (FRS) skills curriculum: a single-blinded, multispecialty, multi-institutional randomized control trial. Ann Surg. 2020;272:384–92.

    PubMed  Google Scholar 

  61. Vanlander AE, Mazzone E, Collins JW, Mottrie AM, Rogiers XM, van der Poel HG, et al. Orsi consensus meeting on European robotic training (OCERT): results from the first multispecialty consensus meeting on training in robot-assisted surgery. Eur Urol. 2020;78:713–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Puliatti, S., Bravi, C.A., De Backer, P., Canda, E. (2022). Technical Advances in Robotic Renal Surgery. In: Wiklund, P., Mottrie, A., Gundeti, M.S., Patel, V. (eds) Robotic Urologic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-00363-9_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00363-9_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00362-2

  • Online ISBN: 978-3-031-00363-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics