Skip to main content

Robotic Renal Transplantation

  • Chapter
  • First Online:
Robotic Urologic Surgery

Abstract

Kidney transplantation (KT) is considered one of the cornerstones in the treatment of end-stage renal disease (ESRD) since transplanted patients reach superior survival rates and an improved quality of life compared to hemodialysis, and the open kidney transplantation (OKT) is considered the gold standard technique (Collins et al., Kidney Int Suppl. 5(1):2–7, 2011). The first KT was performed by Dr. Joseph Murray (Nobel Prize for Medicine, 1990) in 1953 and is reputed to be revolutionary in the history of surgery. The laparoscopic KT (LKT) provided advantages regarding wound infections and analgesic therapy, with a subsequent faster recovery and aesthetic results. However, the procedure resulted to be challenging and needing a solid expertise in laparoscopy to reach acceptable operative times and avoid complications as patients with ESRD have a higher risk to develop respiratory acidosis and hypertension due to the slower elimination of carbon dioxide used for pneumoperitoneum. Obvious limitations of laparoscopic suturing techniques did not allow a widespread adoption of laparoscopic surgery for KT. To overcome the limitations of the laparoscopic approach, robot-assisted kidney transplantation (RAKT) was introduced and is showing promising results as a less invasive alternative to the open approach, with the advantages of the robotic technique such as a shorter learning curve and a high dexterity with enhanced visualization of the surgical field. Additionally, many technological novelties have been introduced in RAKT in order to ameliorate the procedure and overcome its limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collins AJ, Foley RN, Gilbertson DT, Chen S-C. United States Renal Data System public health surveillance of chronic kidney disease and end-stage renal disease. Kidney Int Suppl. (2011). 2015;5(1):2–7. https://doi.org/10.1038/kisup.2015.2.

  2. Rosales A, Salvador JT, Urdaneta G, et al. Laparoscopic kidney transplantation. Eur Urol. 2010;57(1):164–7. https://doi.org/10.1016/j.eururo.2009.06.035.

    Article  PubMed  Google Scholar 

  3. Modi P, Pal B, Modi J, et al. Retroperitoneoscopic living-donor nephrectomy and laparoscopic kidney transplantation: experience of initial 72 cases. Transplantation. 2013;95(1):100–5. https://doi.org/10.1097/TP.0b013e3182795bee.

    Article  PubMed  Google Scholar 

  4. Ahlawat RK, Tugcu V, Arora S, et al. Learning curves and timing of surgical trials: robotic kidney transplantation with regional hypothermia. J Endourol. 2018;32(12):1160–5. https://doi.org/10.1089/end.2017.0697.

    Article  PubMed  Google Scholar 

  5. Sood A, Ghani KR, Ahlawat R, et al. Application of the statistical process control method for prospective patient safety monitoring during the learning phase: robotic kidney transplantation with regional hypothermia (IDEAL phase 2a-b). Eur Urol. 2014;66(2):371–8. https://doi.org/10.1016/j.eururo.2014.02.055.

    Article  PubMed  Google Scholar 

  6. Gallioli A, Territo A, Boissier R, et al. Learning curve in robot-assisted kidney transplantation: results from the European Robotic Urological Society Working Group. Eur Urol. 2020;78(2):239–47. https://doi.org/10.1016/j.eururo.2019.12.008.

    Article  PubMed  Google Scholar 

  7. Oberholzer J, Giulianotti P, Danielson KK, et al. Minimally invasive robotic kidney transplantation for obese patients previously denied access to transplantation. Am J Transplant. 2013;13(3):721–8. https://doi.org/10.1111/ajt.12078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lynch RJ, Ranney DN, Shijie C, Lee DS, Samala N, Englesbe MJ. Obesity, surgical site infection, and outcome following renal transplantation. Ann Surg. 2009;250(6):1014–20. https://doi.org/10.1097/SLA.0b013e3181b4ee9a.

    Article  PubMed  Google Scholar 

  9. Vignolini G, Campi R, Sessa F, et al. Development of a robot-assisted kidney transplantation programme from deceased donors in a referral academic centre: technical nuances and preliminary results. BJU Int. 2019;123(3):474–84. https://doi.org/10.1111/bju.14588.

    Article  PubMed  Google Scholar 

  10. Cohen B, Smits JM, Haase B, Persijn G, Vanrenterghem Y, Frei U. Expanding the donor pool to increase renal transplantation. Nephrol Dial Transplant. 2005;20(1):34–41. https://doi.org/10.1093/ndt/gfh506.

    Article  PubMed  Google Scholar 

  11. Banasik M. Living donor transplantation—the real gift of life. Procurement and the ethical assessment. Ann Transplant. 2006;11(1):4–6.

    PubMed  Google Scholar 

  12. Horgan S, Vanuno D, Benedetti E. Early experience with robotically assisted laparoscopic donor nephrectomy. Surg Laparosc Endosc Percutan Tech. 2002;12(1):64–70. https://doi.org/10.1097/00129689-200202000-00011.

    Article  PubMed  Google Scholar 

  13. Giulianotti P, Gorodner V, Sbrana F, et al. Robotic transabdominal kidney transplantation in a morbidly obese patient. Am J Transplant. 2010;10(6):1478–82. https://doi.org/10.1111/j.1600-6143.2010.03116.x.

    Article  CAS  PubMed  Google Scholar 

  14. Menon M, Abaza R, Sood A, et al. Robotic kidney transplantation with regional hypothermia: evolution of a novel procedure utilizing the IDEAL guidelines (IDEAL phase 0 and 1). Eur Urol. 2014;65(5):1001–9. https://doi.org/10.1016/j.eururo.2013.11.011.

    Article  PubMed  Google Scholar 

  15. Menon M, Sood A, Bhandari M, et al. Robotic kidney transplantation with regional hypothermia: a step-by-step description of the Vattikuti Urology Institute-Medanta technique (IDEAL phase 2a). Eur Urol. 2014;65(5):991–1000. https://doi.org/10.1016/j.eururo.2013.12.006.

    Article  PubMed  Google Scholar 

  16. Breda A, Gausa L, Territo A, et al. Robotic-assisted kidney transplantation: our first case. World J Urol. 2016;34(3):443–7. https://doi.org/10.1007/s00345-015-1673-6.

    Article  CAS  PubMed  Google Scholar 

  17. Breda A, Territo A, Gausa L, et al. Robot-assisted kidney transplantation: the European experience. Eur Urol. 2018;73(2):273–81. https://doi.org/10.1016/j.eururo.2017.08.028.

    Article  PubMed  Google Scholar 

  18. Musquera M, Peri L, Ajami T, et al. Robot-assisted kidney transplantation: update from the European Robotic Urology Section (ERUS) series. BJU Int. 2021;127(2):222–8. https://doi.org/10.1111/bju.15199.

    Article  PubMed  Google Scholar 

  19. Territo A, Gausa L, Alcaraz A, et al. European experience of robot-assisted kidney transplantation: minimum of 1-year follow-up. BJU Int. 2018;122(2):255–62. https://doi.org/10.1111/bju.14247.

    Article  CAS  PubMed  Google Scholar 

  20. Siena G, Campi R, Decaestecker K, et al. Robot-assisted kidney transplantation with regional hypothermia using grafts with multiple vessels after extracorporeal vascular reconstruction: results from the European association of urology robotic urology section working group. Eur Urol Focus. 2018;4(2):175–84. https://doi.org/10.1016/j.euf.2018.07.022.

    Article  PubMed  Google Scholar 

  21. Bianchi G, Martorana E, Ghaith A, et al. Laparoscopic access overview: Is there a safest entry method? Actas Urol Esp. 2016;40(6):386–92. https://doi.org/10.1016/j.acuro.2015.11.011.

    Article  CAS  PubMed  Google Scholar 

  22. Doumerc N, Roumiguié M, Rischmann P, Sallusto F. Totally robotic approach with transvaginal insertion for kidney transplantation. Eur Urol. 2015;68(6):1103–4. https://doi.org/10.1016/j.eururo.2015.07.026.

    Article  PubMed  Google Scholar 

  23. Rajesh A, Akshay S, Wooju J, et al. Robotic kidney transplantation with regional hypothermia versus open kidney transplantation for patients with end stage renal disease: an ideal stage 2B study. J Urol. 2021;205(2):595–602. https://doi.org/10.1097/JU.0000000000001368.

    Article  Google Scholar 

  24. Prudhomme T, Beauval JB, Lesourd M, et al. Robotic-assisted kidney transplantation in obese recipients compared to non-obese recipients: the European experience. World J Urol. Published online June 19, 2020. https://doi.org/10.1007/s00345-020-03309-6.

  25. Nataraj SA, Zafar FA, Ghosh P, Ahlawat R. Feasibility and functional outcome of robotic assisted kidney transplantation using grafts with multiple vessels: comparison to propensity matched contemporary open kidney transplants cohort. Front Surg. 2020;7:51. https://doi.org/10.3389/fsurg.2020.00051.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vignolini G, Greco I, Sessa F, et al. The university of florence technique for robot-assisted kidney transplantation: 3-year experience. Front Surg. 2020;7:583798. https://doi.org/10.3389/fsurg.2020.583798.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Territo A, Piana A, et al. Step-by-step development of a cold ischemia device for open and robotic-assisted renal transplantation. Eur Urol. 2021 May 28;S0302-2838(21)01795-4. https://doi.org/10.1016/j.eururo.2021.05.026.

  28. Decaestecker K, Van Parys B, Van Besien J, et al. Robot-assisted kidney autotransplantation: a minimally invasive way to salvage kidneys. Eur Urol Focus. 2018;4(2):198–205. https://doi.org/10.1016/j.euf.2018.07.019.

    Article  PubMed  Google Scholar 

  29. Breda A, Diana P, et al. Intracorporeal versus extracorporeal robot-assisted kidney autotransplantation: experience of the ERUS RAKT Working Group. Eur Urol. 2021. EPub. https://doi.org/10.1016/j.eururo.2021.07.023.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diana, P., Gallioli, A., Decaestecker, K., Menon, M., Breda, A. (2022). Robotic Renal Transplantation. In: Wiklund, P., Mottrie, A., Gundeti, M.S., Patel, V. (eds) Robotic Urologic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-00363-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00363-9_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00362-2

  • Online ISBN: 978-3-031-00363-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics